Version US 3.0 # Beam Hanger Design Guide ASD Design for the United States #### **Disclaimer** The information in this document is provided on an "as is" basis and for general information purposes only. While MTC Solutions aims to keep the information provided in this document complete, accurate, and in line with state-of-the-art design methods, MTC Solutions, its affiliates, employees, agents, or licensors do not make any representations or warranties of any kind, including, but not limited to, express or implied warranties of fitness for a particular purpose or regarding the content or information in this document, to the full extent permitted by applicable law. The information in this document does not constitute engineering or other professional advice, and any reliance users place on such information is therefore strictly at their own risk. Images and drawings provided within this document are for reference only and may not apply to all possible conditions. MTC Solutions shall not be liable for any loss or damage of any kind, including indirect, direct, incidental, punitive, or consequential loss or damage arising out of, or in connection with, the information, content, materials referenced, or the use of any of the systems described in this document. Users may derive other applications which are beyond MTC Solutions' control. The inclusion of the systems or the implied use of this document for other applications is beyond the scope of MTC Solutions' responsibility. Published on March 10th, 2025. Copyright © 2025 by MTC Solutions. All rights reserved. This document or any portion thereof may not be reproduced or used in any manner whatsoever without the expressed written permission of the publisher. # Beam Hanger Design Guide ASD Design for the United States # **Table of Contents** | HOW TO USE THIS GUIDE | 10 | |--|----| | GENERAL NOTES TO THE DESIGNER | 12 | | GENERAL NOTES TO THE INSTALLER | 14 | | BEAM HANGER SELECTION TOOL | | | GIGANT | 17 | | GIGANT Overview | 18 | | GIGANT Design Information | 19 | | GIGANT Series - Geometry Requirements | 20 | | Additional Detailing Considerations | 23 | | Housing Details | 24 | | Housing Dimensions | 25 | | GIGANT Installation Configurations | 26 | | GIGANT Installation Procedure | 27 | | RICON S VS | 33 | | RICON S VS Overview | 34 | | RICON S VS Design Information | 35 | | RICON S VS Clip Lock | 37 | | RICON S VS 60 Series - Geometry Requirements | 38 | | RICON S VS 80 Series - Geometry Requirements | 41 | | RICON S VS XL - Geometry Requirements | 44 | | Additional Detailing Considerations | 47 | | Skewed and Sloped Configurations | 48 | | Housing Details | 49 | | Housing Dimensions | 50 | | RICON S VS Installation Configurations | 52 | | RICON S VS Installation Procedure | 53 | | MEGANT | 59 | | MEGANT Overview | 60 | | MEGANT Design Information | 62 | | MEGANT 60 Series - Geometry Requirements | 63 | | MEGANT 100 Series - Geometry Requirements | 67 | | MEGANT 150 Series - Geometry Requirements | 71 | | Additional Detailing Considerations | 75 | | Housing Details | 76 | | Housing Dimensions | 77 | | MEGANT Installation Configurations | 79 | | MEGANT Installation Procedure | 80 | | ACCESSORIES | 87 | |---|-----| | Bits | 87 | | Bit Holder Socket | 87 | | Predrilling Jig | 88 | | Clip Lock Brace System for Uplift | 89 | | | | | APPENDIX | 91 | | Appendix A: Fire Protection | 92 | | Appendix B: Uplift Resistance Design | 98 | | | | | Appendix C: Survey of Literature on Reinforcement for Tension Perpendicular to Grain. | 100 | At MTC Solutions, our core focus is to supply structural hardware for modern mass timber applications in commercial, industrial, and residential projects. Our pride lies in collaborating with leading industry experts to offer design solutions and tools for code-compliant, sustainable buildings, continuously pushing the boundaries of the North American construction industry. Our in-house team of mass timber specialists support professionals in designing customized connections that cater to the specific requirements of each project, resulting in truly innovative and cost-efficient solutions. With industry-recognized expertise and tested & proven solutions, we stand at the forefront of the industry, driving progress and innovation in mass timber construction. Expertise We provide our customers with the knowledge and tools necessary to construct cutting-edge, code-compliant mass timber projects while pushing the boundaries of the North American construction industry. Commitment We are dedicated to making your project a success, offering support from design and installation assistance to fast and precise delivery of high-quality products. Products Tailored for North America We partner with leading research facilities across North America to ensure that our products are tested and customized to meet the unique needs of the market, including seismic considerations and solutions for large post-and-beam structures in various climates. # Find Your Connection Solution MTC Solutions provides the right tools to design code-compliant buildings, educating the mass timber industry on connection solutions. Structural Screw Connection Design Guide Structural Fasteners Accessories Beam Hangers Design Guide Beam Hangers Connector Design Guide Connectors Rigging Design Guide Rigging Devices Fall Arrest Anchor Design Guide Fall Arrest # YOUR MASS TIMBER HARDWARE SUPPLIER Rely on our distribution team to deliver your North American projects with speed and accuracy. # LEADING WITH INNOVATION & RESEARCH We are leading the mass timber industry with cutting-edge connection solutions and through partnerships with renowned research facilities. # WE MAKE YOU THE EXPERT Learn about the right solutions for your projects and mass timber connections with our technical resources & support team! # CONNECTION DESIGN SUPPORT Reach out to our technical team for design support, from early design stages to ongoing iterative changes. We help you find the most efficient connection solutions. # MANUFACTURERS' HELP DESK Use our comprehensive & practical resources to find the most cost-effective solutions for your structural elements. # TESTED & PROVEN SOLUTIONS Count on MTC Solutions' 10+ years of expertise, providing tested & proven, ICC-approved solutions, support, and resources. # How to Use This Guide ### Overview This section provides the key highlights for each product, including product description, key design features, and product certifications. This sidebar outlines the design values, detailing information, and installation guidelines included in each product subsection. This table provides an overview of the hardware package required for a beam hanger connection, including the number of plates, fasteners for both primary and secondary members, and installation times. ## **Design Section** This table provides the allowable loads for connectors based on connection configurations and specific gravities. It also provides minimum secondary beam sizes for various fire-resistance ratings (FRR). ## **Detailing Section** These renderings define key dimensions for each series of connectors in the product family. These tables provide minimum dimensions for secondary beams, primary beams, or primary columns incorporating minimum fastener geometry and FRR. This section provides detailed guidelines for preparing wood members to ensure proper alignment, load transfer, and connector performance. Detailed routing dimensions, including minimum tolerances, are provided to ensure proper installation and meet fire protection requirements. ### Installation Section **General Installation Information:** Includes average installation time for each connector and outlines the tools required for installation. **Step-by-Step Guidance:** Provides a detailed breakdown of the installation process, including connector layout, placement of positioning screws, pilot hole recommendations, and the sequence for installing structural screws. Detailed tips to ensure precise screw installation are also included. **Special-Case Instructions:** The gray boxes highlight procedures or requirements that apply only to specific scenarios, such as unique structural needs, uplift considerations, or sealing for fire protection. # General Notes to the Designer - Allowable loads for GIGANT and MEGANT connectors are derived in accordance with ASTM D7147-21 and allowable loads for RICON S VS connectors are based on ICC-ESR-4300 (2024). - Allowable loads provided are per Allowable Stress Design (ASD) and must be adjusted in accordance with all applicable adjustment factors per NDS 2024 Section 11.3. - 3. Connectors in combination with carbon steel fasteners are to be used in dry service conditions only, i.e., wet service factor, $C_M = 1.0$. - 4. During construction, mass timber elements may experience temporary surface wetting, potentially causing the timber surface moisture content (MC) to exceed 19%. In such cases, A3K electroplated carbon steel fasteners are acceptable for use, provided that the following three conditions are met. First, the surface wetting shall not exceed the moisture limits defined for dry service conditions for more than a few weeks per year. Second, the annual average MC during construction shall remain within the range of 10-16%. Third, the design must incorporate appropriate detailing to accommodate dimensional changes in the wood due to wetting and/or drying. If any of these conditions cannot be met, fasteners with enhanced corrosion resistance are recommended, and detailing must be adjusted accordingly. - 5. Allowable loads provided incorporate a load duration factor, $C_{\rm D}$, of 1.0 and cannot be further increased for shorter load durations. For permanent dead loads, allowable loads must be adjusted by a $C_{\rm D}$ of 0.9 in accordance with NDS 2024 Table 2.3.2. -
6. Tabulated allowable loads apply to connections exposed to sustained temperatures below 100°F. When connectors are installed in wood members that will experience sustained exposure to temperatures exceeding 100°F, the allowable loads must be adjusted by the temperature factor, C_t, as described in NDS 2024. - Allowable loads provided are valid only when using the listed associated GIGANT SK screws with GIGANT connectors, and the listed associated ASSY screws with RICON S VS and MEGANT connectors. - 8. Connectors are to be centered with the resultant vertical force, with the plates installed symmetrically about the vertical axis. Horizontal eccentricities need to be specified and the resulting rotational forces accounted for. - Connectors, if subjected to rotational forces, must be designed accordingly, with the Engineer of Record (EOR) specifying any necessary additional measures. - 10. Appropriate lateral support must be provided for lateral stability against rotation. - 11. Pilot holes may be used to facilitate fastener installation with greater precision. Pilot hole diameters shall not exceed the minor diameter, D_m , of the fastener. - 12. Predrilling is required when installing connectors into Parallel Strand Lumber (PSL) and the edge of laminated veneer products to reduce the risk of splitting. - 13. A hole is considered predrilled if its length matches the entire length of the fastener. - 14. Installation must respect all minimum beam size requirements, including fastener geometry requirements and fire-resistance rating (FRR) requirements. - 15. Within this guide, the term "primary member" refers to the supporting member (beam or column), and the term "secondary beam" refers to the supported beam, typically with the connector installed into the end grain. - 16. Minimum beam sizes presented are based on geometry and FRR requirements. Allowable loads of the connector may exceed the capacity of the wood member. The EOR must ensure that all possible stress limits for the wood members, such as the shear capacity, flexural capacity, deflection limits, and other material properties, are not exceeded while maintaining a continuous load path. - 17. Tabulated sample beam depths are for reference purposes only. Note that tolerances for finished glulam dimensions provided in the ANSI 117 manufacturing standard may not ensure the adequate squareness and depth required for seamless field installation. A 1/4 in. undersize in depth and a 1/8 in. undersize in width may be required. Verify all finished glulam dimensions with the timber provider. - 18. When side grain or beam-end conditions cause the tensile strength of the wood perpendicular to grain to be exceeded, reinforcement must be added to ensure the connection's structural integrity. The EOR is responsible for the design of any required reinforcing screws. - 19. For specific gravities, G, assigned to different timber species, refer to NDS 2024 Table 12.3.3A. - 20. Members manufactured with split laminations should have the vertical joints of all laminations in contact at the time of fabrication. ## General Notes to the Installer - 1. Refer to detailing installation guidelines within each product chapter for additional information. - Carbon steel fasteners shall only be used in dry service conditions, as exposure to wet service conditions may lead to premature failure. Connections designed for dry service conditions should be protected from wetting and excessive moisture during construction. - 3. During construction, mass timber elements may experience temporary surface wetting, potentially causing the timber surface moisture content (MC) to exceed 19%. In such cases, A3K electroplated carbon steel fasteners are acceptable for use, provided that the following three conditions are met. First, the surface wetting shall not exceed the moisture limits defined for dry service conditions for more than a few weeks per year. Second, the annual average MC during construction shall remain within the range of 10-16%. Third, the design must incorporate appropriate detailing to accommodate dimensional changes in the wood due to wetting and/or drying. If any of these conditions cannot be met, fasteners with enhanced corrosion resistance are recommended, and detailing must be adjusted accordingly. - 4. Use a drill equipped with a feather (variable-speed) trigger to ensure proper torque management and mitigate the risk of overtorquing. Although impact guns are not expressly prohibited, their use is discouraged due to increased risk of overtorquing. If an impact gun is utilized, limit its use to short screws and maintain a continuous drive without pausing. For more information on drill selection, refer to the Installation Guidelines within each product section. - GIGANT connectors must be installed with the listed GIGANT SK screws, while RICON S VS and MEGANT connectors must be installed with the listed ASSY screws. Substitution of fasteners is not permitted. - 6. If splitting of a wood member or fastener damage is observed prior to or during installation of the fasteners, the installation process must be stopped, and the Engineer of Record (EOR) must be contacted immediately to provide appropriate site instructions to rectify the issue. - 7. Pilot holes may be used to facilitate fastener installation with greater precision. Pilot holes shall be 1 in. deep and their diameters shall not exceed the minor diameter, D_m , of the fastener. - 8. For fasteners installed in a countersunk hole, a pilot hole using the Predrilling Jig is recommended to ensure proper installation of the fasteners. - Predrilling can help reduce the insertion torque of self-tapping fasteners. Predrilling is recommended for installation of fasteners into dry (<10% MC) Southern Yellow Pine (SYP) to reduce installation torque. - 10. Screws should be fully driven in an uninterrupted process, from tip insertion to head seating. If necessary, a torque wrench may be used to complete installation immediately after initial insertion of the screw. # Beam Hanger Selection Tool The following pre-selection table helps the designer choose the correct beam hanger system. It lists the allowable loads for each system as well as the minimum beam width and depth. More details on a specific beam hanger system can be found on the pages referenced in the table. Additional requirements, such as those relating to geometry and special connections, must also be taken into consideration where applicable. | Minimun
Wid | | Minimum
Widt | | | Allowable Load | Connector | | | |----------------|---------|-----------------|---------|------|----------------|------------------------|------|--| | in. | [mm] | in. | [mm] | | kips | Model | Page | | | | | 6-5/16 | [160] | 1.2 | | GIGANT 120 x 40 | 20 | | | 3-15/16 | [100] | 7-3/32 | [180] | 1.9 | | GIGANT 150 x 40 | 20 | | | | | 8-21/32 | [220] | 2.5 | | GIGANT 180 x 40 | 20 | | | 3-5/8 | 1001 | 7-5/16 | [186] | 3.8 | | RICON S VS 140 x 60 | 38 | | | 3-5/6 | [92] | 9-11/16 | [246] | 4.8 | | RICON S VS 200 x 60 | 38 | | | | | 16-5/32 | [410] | 9.8 | | MEGANT 310 x 60 | 63 | | | 3-15/32 | [88] | 20-7/8 | [530] | 12.8 | | MEGANT 430 x 60 | 63 | | | | | 25-19/32 | [650] | 12.8 | | MEGANT 550 x 60 | 63 | | | | | 10-1/4 | [260] | 6.9 | | RICON S VS 200 x 80 | 41 | | | 4-23/32 | [120] | 12-19/32 | [320] | 8.9 | | RICON S VS 290 x 80 | 41 | | | | | 16-15/16 | [430] | 15.0 | | RICON S VS XL 390 x 80 | 44 | | | | | 14-13/16 | [376] | 12.6 | | MEGANT 310 x 100 | 67 | | | 5-1/32 | [128] | 19-17/32 | [496] | 17.7 | | MEGANT 430 x 100 | 67 | | | | | 24-1/4 | [616] | 19.5 | | MEGANT 550 x 100 | 67 | | | | | 14-13/16 | [376] | 16.3 | | MEGANT 310 x 150 | 71 | | | 7 | [179] | 19-17/32 | [496] | 27.2 | | MEGANT 430 x 150 | 71 | | | _ ′ | [178] | 24-1/4 | [616] | 31.7 | | MEGANT 550 x 150 | 71 | | | | | 30-15/16 | [786] | 32.6 | | MEGANT 730 x 150 | 71 | | - 1. Tabulated allowable loads are only valid for Allowable Stress Design in the US. This table is a pre-selection tool. Refer to each respective connector section and NDS 2024 for design guidelines. - 2. Tabulated allowable loads are only valid for use in G≥ 0.50 in standard-term loading (C_n = 1.0). Refer to each respective connector section for additional values. - 3. Tabulated allowable loads are for a single connector. Refer to the RICON S VS and MEGANT product chapters for double connector configuration capacities. - 4. Tabulated minimum beam sizes are based on geometry requirements for the connector and fasteners and do not account for the fire-resistance rating (FRR) or capacity of the wood members. The EOR is responsible for verifying stress limits for the wood members. See product chapters for minimum beam size requirements for various FRR. # **GIGANT** # Pre-Engineered Connection System The GIGANT is a pre-engineered system for beam-to-column and beam-to-beam connections. Manufactured from mild steel, it consists of two identical parts and is suitable for use in timber framing, log home building, and mass and heavy timber construction. Easy to install with structural screws perpendicular to its plates, the GIGANT can be fully concealed or visible. #### Pre-Installable Pre-installable in a controlled shop environment for a faster on-site installation #### **Drop-in Installation** A fast, streamlined & repeatable installation process that significantly enhances efficiency • Wood-to-Wood Design Values ## Light Frame Best used in timber framing & log home building ### Fully Concealable Easy to conceal connections, enhancing architectural wood features #### Detailing - General Detailing Information - GIGANT Geometry Requirements - Additional Hanger Placement Considerations #### Installation - Installation Considerations - Routing Information - Tool Requirements - Step-by-Step Installation Guidelines ## **CERTIFICATIONS** ETA-10/0189 2019 # **GIGANT** Overview Table 1.1 - GIGANT Hardware Package Installation
Overview | CI | GIGANT | | | | Installation | | | |--------|--------------------|---------------|----------------------------|------|----------------------------|------|------| | Gi | SANI | Plate
Qty. | Primary Member | | Secondary Membe | Time | | | Series | Model | | Туре | Qty. | Туре | Qty. | min. | | | GIGANT
120 x 40 | 2 | GIGANT SK
3/8" x 3-1/8" | 3 | GIGANT SK
3/8" x 4-3/4" | 3 | 4 | | 40 | GIGANT
150 x 40 | 2 | GIGANT SK
3/8" x 3-1/8" | 4 | GIGANT SK
3/8" x 4-3/4" | 4 | 5 | | | GIGANT
180 x 40 | 2 | GIGANT SK
3/8" x 3-1/8" | 6 | GIGANT SK
3/8" x 4-3/4" | 6 | 5 | #### Product Kit Details GIGANT SK **GIGANT Plates** - 1. Subsequent tabulated capacities in this chapter assume connectors are installed with fasteners specified in this table. - The estimated installation time is based on a time study and includes steps for layout and positioning and structural screw installation for both plates. Refer to the General Installation Steps (Page 28) for more information. # **GIGANT Design Information** ## Wood-to-Wood Design Values Table 1.2 - Allowable Loads for GIGANT in Wood-to-Wood Connections | Model | | Minimum Secondary Beam
Section Dimensions [in.] | | | | | | | | |----------|---|--|--------------------|--------|---------|--|--|--|--| | | No FRR | 1-hr FRR | 2-hr FRR | | [lb.] | | | | | | GIGANT | ANT 3-15/16 x 6-5/16 5 x 7-23/32 7-19/32 x 9-1: | 7 40/22 × 0 42/22 | ≥ 0.42 | 1,090 | | | | | | | 120 x 40 | 3-13/10 X 0-3/10 | 3 X 1-23/32 | 7-19/32 X 9-13/32 | ≥ 0.50 | 1,230 | | | | | | GIGANT | 3-15/16 x 7-3/32 | 5 x 8-23/32 | 7-19/32 x 10-13/32 | ≥ 0.42 | 1,640 | | | | | | 150 x 40 | 3-13/10 X /-3/32 | 3 X 0-23/32 | 7-19/32 X 10-13/32 | ≥ 0.50 | 1,910 | | | | | | GIGANT | 3-15/16 x 8-21/32 | E v. 40 E/22 | 7 40/22 - 44 27/22 | ≥ 0.42 | 2,180 | | | | | | 180 x 40 | 3-13/10 X 0-21/32 | 5 x 10-5/32 | 7-19/32 x 11-27/32 | ≥ 0.50 | 2,460 | | | | | - 1. Connection design must meet all relevant requirements of the General Notes to the Designer section. - 2. Tabulated allowable loads are applicable for wood-to-wood connections only. - 3. Screw installation must follow the patterns presented in the Installation section. - 4. Tabulated allowable loads are IBC-compliant in accordance with ASTM D7147. - Tabulated values that are not dependent on FRR, as well as those for secondary beams with no FRR, are based on testing conducted in accordance with ASTM D7147. - Minimum dimensions for beams with an FRR are based on minimum wood cover requirements specified in NDS 2024 Chapter 16.5. Beam sizes satisfying an FRR assume a fire-resistant joint compliant with FDS 2024 Section 2.5.1.3. and that any void below the connector in the routing has been sealed with a wood plug. - 7. Tabulated allowable loads assume members are positioned at beam depths that do not require reinforcement. Refer to Appendix C: Survey of Literature on Reinforcement for Tension Perpendicular to Grain (Page 100) for more information. It is the responsibility of the EOR to ensure the primary and secondary members have adequate capacity to resist connection forces. # GIGANT Series - Geometry Requirements ## **GIGANT Series - Connector Geometry** Table 1.3 - GIGANT Geometry | | | Model | | | | | | |-----------------------|--------------------|--------------------|---------|--|--|--|--| | Connector
Geometry | GIGANT
120 x 40 | GIGANT
180 x 40 | | | | | | | | [in.] | | | | | | | | H ₁ | 4-21/32 | 5-29/32 | 7-5/32 | | | | | | H ₂ | 4-13/32 | 5-21/32 | 6-15/16 | | | | | | w | 1-9/16 | 1-9/16 | 1-9/16 | | | | | | Т | 1-1/32 | 1-1/32 | 1-1/32 | | | | | Housed Note: Refer to Appendix D: Product Specifications (Page 109) for additional product specifications. ## Secondary Member Geometry Requirements Table 1.4 - GIGANT Geometry Requirements for Secondary Member | | Minimum Dimensions [in.] | | | | | | | | | | | |--------------------|----------------------------|------------------|-------------------|------------------|-------------------|------------------|-------------------|------------------|----------------|--|--| | Model | | | No I | No FRR | | 1-hr FRR | | 2-hr FRR | | | | | | I _p | e _{top} | e _{side} | e _{bot} | e _{side} | e _{bot} | e _{side} | e _{bot} | d _h | | | | GIGANT
120 x 40 | 4-11/32 | 13/16 | 1-3/16 | 1-1/16 | 1-23/32 | 2-15/32 | 3 | 4-5/32 | 1 | | | | GIGANT
150 x 40 | 4-11/32 | 19/32 | 1-3/16 | 13/16 | 1-23/32 | 2-15/32 | 3 | 4-5/32 | 1 | | | | GIGANT
180 x 40 | 4-11/32 | 3/4 | 1-3/16 | 31/32 | 1-23/32 | 2-15/32 | 3 | 4-5/32 | 1 | | | - 1. Connection design must meet all relevant requirements of the General Notes to the Designer section. - Screw installation must follow the patterns presented in the Installation section. - 3. Tabulated values are minimum requirements unless noted otherwise. Tabulated values for I_p are fixed. Tabulated values for d_h are maximum values based on a gap of 0.039 in. between the primary and secondary member. Larger gaps (such as a typical gap of 1/8 in.) will reduce d_h accordingly. - 4. Tabulated values that are not dependent on FRR, as well as those for secondary beams with no FRR, are based on testing conducted in accordance with ASTM D7147. - Minimum dimensions for beams with an FRR are based on minimum wood cover requirements specified in NDS 2024 Chapter 16.5. Beam sizes satisfying an FRR assume a fire-resistant joint compliant with FDS 2024 Section 2.5.1.3. and that any void below the connector in the routing has been sealed with a wood plug. # Primary Member Geometry Requirements - Beam/Girder Unhoused Housed Table 1.5 - GIGANT Geometry Requirements for Primary Member (Beam/Girder) | | Minimum Dimensions [in.] | | | | | | | | | | | |--------------------|----------------------------|------------------|------------------|-------------------|------------------|-------------------|------------------|-------------------|----------------|--|--| | Model | | | No | No FRR | | 1-hr FRR | | 2-hr FRR | | | | | | l _p | e _{top} | e _{bot} | e _{back} | e _{bot} | e _{back} | e _{bot} | e _{back} | d _h | | | | GIGANT
120 x 40 | 2-3/4 | 1-1/16 | 13/16 | 13/32 | 2-1/4 | 1-23/32 | 3-15/16 | 3 | 1 | | | | GIGANT
150 x 40 | 2-3/4 | 13/16 | 19/32 | 13/32 | 2-1/4 | 1-23/32 | 3-15/16 | 3 | 1 | | | | GIGANT
180 x 40 | 2-3/4 | 31/32 | 3/4 | 13/32 | 2-1/4 | 1-23/32 | 3-15/16 | 3 | 1 | | | - 1. Connection design must meet all relevant requirements of the General Notes to the Designer section. - Screw installation must follow the patterns presented in the Installation section. 2 - Tabulated values are minimum requirements unless noted otherwise. Tabulated values for I_n are fixed. Tabulated values for d_h are maximum values based on a gap of 0.039 in. between the primary and secondary member. Larger gaps (such as a typical gap of 1/8 in.) will reduce d, accordingly. - Tabulated values that are not dependent on FRR, as well as those for primary beams with no FRR, are based on testing conducted in accordance with ASTM D7147. - Minimum dimensions for beams with an FRR are based on minimum wood cover requirements specified in NDS 2024 Chapter 16.5. Beam sizes satisfying an FRR assume a fire-resistant joint compliant with FDS 2024 Section 2.5.1.3. and that any void below the connector in the routing has been sealed with a wood plug. - 6. Values for e_{ton} are minimum requirements based on minimum end and edge distance, and may need to be adjusted to align with the hanger placement in the secondary beam. # Primary Member Geometry Requirements - Column Unhoused Housed Table 1.6 - GIGANT Geometry Requirements for Primary Member (Column) | | Minimum Dimensions [in.] | | | | | | | | | | | |--------------------|----------------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------|--|--| | Model | | | No FRR | | 1-hr FRR | | 2-hr FRR | | 4 | | | | | 'p | e _{top} | e _{side} | e _{back} | e _{side} | e _{back} | e _{side} | e _{back} | d _h | | | | GIGANT
120 x 40 | 2-3/4 | 1-1/16 | 1-3/16 | 13/32 | 1-23/32 | 1-23/32 | 3 | 3 | 1 | | | | GIGANT
150 x 40 | 2-3/4 | 13/16 | 1-3/16 | 13/32 | 1-23/32 | 1-23/32 | 3 | 3 | 1 | | | | GIGANT
180 x 40 | 2-3/4 | 31/32 | 1-3/16 | 13/32 | 1-23/32 | 1-23/32 | 3 | 3 | 1 | | | - 1. Connection design must meet all relevant requirements of the General Notes to the Designer section. - 2. Screw installation must follow the patterns presented in the Installation section. - 3. Tabulated values are minimum requirements unless noted otherwise. Tabulated values for I_p are fixed. Tabulated values for d_h are maximum values based on a gap of 0.039 in. between the primary and secondary member. Larger gaps (such as a typical gap of 1/8 in.) will reduce d_h accordingly. - 4. Tabulated values that are not dependent on FRR, as well as those for primary columns with no FRR, are based on minimum fastener end distances specified in AC 233 for fasteners with pre-drilled holes, a minimum depth to prevent the screw tip from penetrating through the column, and testing conducted in accordance with ASTM D7147. - 5. Minimum dimensions for columns with an FRR are based on minimum wood cover requirements specified in NDS 2024 Chapter 16.5. Column sizes satisfying an FRR assume a fire-resistant joint compliant with FDS 2024 Section 2.5.1.3 and that any void below the connector in the routing has been sealed with a wood plug. - 6. Values for e_{top} are minimum requirements based on minimum end and edge distance, and may need to be adjusted to align with the hanger placement in the secondary beam. # Additional Detailing Considerations # Geometry Requirements for Columns with Multiple Beam Hangers Table 1.7 - Minimum Column Sizes for Multiple GIGANT Connectors | | Minimum Column Section Dimensions, b x d [in. x in.] | | | | | | | | |
-----------------|--|-------------------|-----------------|---|------------|------------------|--|--|--| | Model | Hangers on Op | posing Faces of a | Square Column | Hangers on Opposing Faces of a Rectangular Column | | | | | | | | No FRR | 1-hr FRR | 2-hr FRR | No FRR | 1-hr FRR | 2-hr FRR | | | | | GIGANT 120 x 40 | 8-1/32 x 8-1/32 | 8-1/32 x 8-1/32 | 8-1/32 x 8-1/32 | 3-15/16 x 8-1/32 | 5 x 8-1/32 | 7-19/32 x 8-1/32 | | | | | GIGANT 150 x 40 | 8-1/32 x 8-1/32 | 8-1/32 x 8-1/32 | 8-1/32 x 8-1/32 | 3-15/16 x 8-1/32 | 5 x 8-1/32 | 7-19/32 x 8-1/32 | | | | | GIGANT 180 x 40 | 8-1/32 x 8-1/32 | 8-1/32 x 8-1/32 | 8-1/32 x 8-1/32 | 3-15/16 x 8-1/32 | 5 x 8-1/32 | 7-19/32 x 8-1/32 | | | | | Model | Minimum Column Section Dimensions, b _c x d _c [in. x in.] | | | | | | | | | |-----------------|--|--------------------|-------------------|--|-------------|-------------------|--|--|--| | | Hanger on E | Each Face of a Squ | ıare Column | Hangers on Each Face of a Rectangular Column | | | | | | | | No FRR | 1-hr FRR | 2-hr FRR | No FRR | 1-hr FRR | 2-hr FRR | | | | | GIGANT 120 x 40 | 8-17/32 x 8-17/32 | 8-17/32 x 8-17/32 | 8-17/32 x 8-17/32 | 3-15/16 x 8-17/32 | 5 x 8-17/32 | 7-19/32 x 8-17/32 | | | | | GIGANT 150 x 40 | 9-5/16 x 9-5/16 | 9-5/16 x 9-5/16 | 9-5/16 x 9-5/16 | 3-15/16 x 9-5/16 | 5 x 9-5/16 | 7-19/32 x 9-5/16 | | | | | GIGANT 180 x 40 | 9-5/16 x 9-5/16 | 9-5/16 x 9-5/16 | 9-5/16 x 9-5/16 | 3-15/16 x 9-5/16 | 5 x 9-5/16 | 7-19/32 x 9-5/16 | | | | #### Notes: - Tabulated column section dimensions are minimum values based on a 1/2 in. clearance between screw tips, minimum edge and end distances, and minimum wood cover requirements for FRR. Refer to Geometry Requirements for further details. - 2. It is the responsibility of the EOR to ensure the primary and secondary members have adequate capacity to resist connection forces. - Tabulated column section dimensions assume hangers are centered within each column face and are housed in the column as shown. ## **Hanger Placement Considerations** The hanger placement relative to the height of the beam can impact the need for reinforcement. Connectors in the primary member should have the uppermost fastener in the top 30% of the member depth (0.3d), as shown in the bottom left figure. Connectors in the secondary member should have the lowermost fastener in the bottom 30%, as shown in the bottom right figure. Outside of these zones, the primary and secondary members should be checked for splitting to determine if reinforcement is required. For further information, refer to Appendix C: Survey of Literature on Reinforcement for Tension Perpendicular to Grain (Page 100). # **Housing Details** ## Housing Possibilities ### Primary Beam Housing - Most common housing for concealed installation - Concealed from below #### Secondary Beam Housing - Joist housing from bottom up - · Concealed from below with a wood plug #### Secondary Beam Through Housing - Full-depth housing in joist - Concealed from below with a wood plug - · May simplify fabrication ## Housing and Surface Detailing Housed in Primary Member (Column) Housed in Primary Member (Girder) Housed in Secondary Member (Joist or Purlin) **Parallel Surface:** The members must be parallel at the location of the connection to ensure proper hanger alignment and load transfer. **Gap Size:** The gap size between wood members balances installation ease and fire performance, with larger gaps simplifying installation but reducing fire protection. The gap is typically sized at 1/8 in. [3.2 mm] to address fire protection considerations as outlined in FDS 2024 [refer to Appendix A: Fire Protection (Page 92)]. For proper installation, a minimum gap of 0.039 in. [1 mm] is required to allow the secondary member to slide into place. **Routing Depth:** The routing depth is the depth of the housing, d_h , noted in the Geometry Requirements and Routing Details sections. This depth takes into account the thickness of the connector and the gap between members (assumed as 0.039 in. [1 mm] herein - larger gaps will reduce d_h accordingly). **Routing Width:** It is recommended to allow a clearance of 0.039 in. [1 mm] on each side of the connector, resulting in a routing width of 1.654 in. [42 mm] for the GIGANT connector. **Routing Height:** The routing height must be coordinated with the EOR. The height of the connector in the beam section has an impact on connector performance. Refer to Hanger Placement Considerations section (Page 23) for further information. # **Housing Dimensions** ## Routing in Primary Member #### **Fastener Orientation** Structural Positioning Screws (Refer to Fastener Layout on Page 27) Top View Table 1.8 - Routing Dimensions for GIGANT Housed in Primary Member | Model | | | Routing | Dimensions, | in. <i>[mm]</i> | | | |-----------------|--------------------|---------------------|--------------------|---------------------|---------------------|-------------------|-----------------------| | | hp | h _{p,top} | h | h _{p,bot} | W _p | W _e | d _h | | GIGANT 120 x 40 | 5.512 [140] | 1.969 [50] | 2.244 [57] | 2.087 [53] | 1.654 [42] | 0.827 [21] | 1.004 [25.5] | | GIGANT 150 x 40 | 6.535 [166] | 1.723 [44] | 3.504 [89] | 1.850 [47] | 1.654 [42] | 0.827 [21] | 1.004 [25.5] | | GIGANT 180 x 40 | 7.953 [202] | 1.890 [48] | 4.764 [121] | 2.008 [48] | 1.654 [42] | 0.827 [21] | 1.004 [25.5] | #### Notes: - 1. Tabulated values are general guidelines for routing requirements. The EOR and fabricator are responsible for ensuring final routing dimensions account for all project-specific conditions. - 2. Tabulated values are minimum requirements unless noted otherwise. Tabulated values for h are fixed. Tabulated values for d, are maximum allowable. - 3. Tabulated values account for 0.039 in. [1 mm] on each side of and below the hanger. Larger installation tolerances will increase height and width values accordingly. - 4. Tabulated values are based on a gap of 0.039 in. [1 mm] between the primary and secondary member. Larger gaps (such as a typical gap of 1/8 in.) will reduce d_h accordingly. - 5. Refer to the Geometry Requirements tables for each respective beam hanger for additional information. - 6. Tabulated values assume square corners. Manufacturers should adjust these values based on their specific routing bit sizes. In order to account for the round corner created by routing tools, 1/4 in. overrun is permitted at the inside corners as indicated on the image above. ## Routing in Secondary Member Top View Table 1.9 - Routing Dimensions for GIGANT Housed in Secondary Member (Beam-End) | Model | Routing Dimensions, in. [mm] | | | | | | | | | | | | | | |-----------------|------------------------------|---------|--------------------|--------|-------|--------|--------------------|--------|----------------|------|----------------|------|----------------|----------| | Wodei | h _s | | h _{s,top} | | h | | h _{s,bot} | | W _s | | W _e | | d _h | | | GIGANT 120 x 40 | 5.512 | [140] | 1.732 | [44] | 2.244 | [57] | 2.323 | [59] | 1.654 | [42] | 0.827 | [21] | 1.004 | [25.5] | | GIGANT 150 x 40 | 6.535 | [166] | 1.496 | [38] | 3.504 | [89] | 2.087 | [53] | 1.654 | [42] | 0.827 | [21] | 1.004 | [25.5] | | GIGANT 180 x 40 | 7.953 | [202] | 1.654 | [42] | 4.764 | [121] | 2.244 | [57] | 1.654 | [42] | 0.827 | [21] | 1.004 | [25.5] | - 1. Tabulated values are general guidelines for routing requirements. The EOR and fabricator are responsible for ensuring final routing dimensions account for all project-specific conditions. - 2. Tabulated values are minimum requirements unless noted otherwise. Tabulated values for h are fixed. Tabulated values for d, are maximum allowable. - 3. Tabulated values account for 0.039 in. [1 mm] on each side of and below the hanger. Larger installation tolerances will increase height and width values accordingly. - Tabulated values are based on a gap of 0.039 in. [1 mm] between the primary and secondary member. Larger gaps (such as a typical gap of 1/8 in.) will reduce d_n accordingly. - 5. Refer to the Geometry Requirements tables for each respective beam hanger for additional information. - Tabulated values assume square corners. Manufacturers should adjust these values based on their specific routing bit sizes. In order to account for the round corner created by routing tools, 1/4 in. overrun is permitted at the inside corners as indicated on the image above. # **GIGANT Installation Configurations** # Possible Installation Configurations for GIGANT ## Beam Length Tolerances and Sequencing Installation sequencing is important, especially for buildings with multiple bays of post-and-beam framing. It is recommended to install the beams starting from one end of the building and progress along the column line. The last beam can be produced slightly over length and cut to size on-site to help address any dimensional tolerance challenges. The GIGANT features tapered openings that facilitate installation by guiding the secondary beam into place. Beams positioned up to 1/4 in. to either side or slightly out from the primary member will self-center as they slide down. GIGANT Installation Tolerance # **GIGANT Installation Procedure** ## **Tool Requirements** #### Tools - Use the Correct Bit Fasteners should only be driven using appropriately sized star bits. This ensures good centering and positioning with optimal torque transmission. #### Tools - Use the Correct Drill Use low-RPM, high-torque drills equipped with a feather (variable speed) trigger to install fasteners. Avoid excessive acceleration and deceleration during the drive-in process. Do not
overtorque fasteners. Although impact guns are not expressly prohibited, their use is discouraged - particularly for beam hanger systems - due to an increased risk of overtorquing. Use the appropriate drill chuck size according to the fastener. Table 1.10 - Recommended Torque, Drill Bits, and Power Drill | Nominal Fastener
Diameter [D] | | HSS Drill
Bit Size | Power Drill
Voltage | Allowable
Insertion
Torque | |------------------------------------|--------|-----------------------|------------------------|----------------------------------| | in. | [mm] | in. | V | lb.∙ ft. | | 3/8 | [10] | 1/4 | 60 | 22.13 | ## **Fastener Layout** #### **Fastener Orientation** Structural Positioning Screws 120 x 40 **GIGANT** 150 x 40 **GIGANT** 180 x 40 ## **General Installation Steps** #### Estimated Installation Time The estimated time for a single person to install a complete GIGANT product is shown in Table 1.11. The process includes the following steps: - 1. Layout (~25%–30%) - 2. Positioning (~40%–50%) - 3. Screw Installation (~20%-30%) - 4. Optional Measures (not included in the time installation % breakdown) Table 1.11 - GIGANT Estimated Installation Times | Model | Average Installation Time
[min.] | |-----------------|--------------------------------------| | GIGANT 120 x 40 | 4 | | GIGANT 150 x 40 | 5 | | GIGANT 180 x 40 | 5 | The estimated installation time can be improved upon with efficient fabrication and site practices such as: - 1. Drilling pilot holes for the structural positioning screws at the time of fabrication - Utilizing templates to drill pilot holes for structural screws - Optimizing beam positioning to reduce worker fatigue ## Step-by-Step Installation Guidelines #### 1.1 #### Layout - Reference Points Begin by laying out the installation locations in the primary and secondary members using a pencil and square. The connector's point of reference is the top of the beam. The **lower structural positioning screw** should be measured from that point of reference. The **hook** should be at the **bottom** on the primary member and on the **top** on the secondary member. The structural fasteners will act as collar bolts when installed. #### 1.2 #### Layout - Split Lamination Considerations It is recommended that gaps in split lamination glulam beams be tight at the time of manufacturing. Gaps between adjacent plies may occur due to wood shrinkage. Such gaps are not compatible with GIGANT installation because wood will shrink and swell and cause checks. # 2.1 Positioning - Structural Positioning Screw Installation Structural positioning screws ensure accurate placement of the GIGANT connector. Install one structural positioning screw into the center hole at the top of the plate for the primary member and into the bottom of the plate for the secondary member. Check to ensure alignment is maintained, and then install another structural positioning screw into the center hole at the opposite end of the plate. The second structural positioning screw will be installed in the lip of the connector. Ensure the screw is not overdriven so the connector lip does not bend. ### 3.1 Screw Installation - Align Drill Bit Axis Align the drill bit axis parallel to the fastener axis during installation to allow proper torque transmission and to avoid stripping. #### 3.2 Screw Installation - Decrease RPM To avoid overtorquing the screw, decrease the rotation speed about 1/2 in. away from the final installed position. This is crucial to prevent wood crushing due to overtorquing, which can impact beam hanger tolerances, potentially impeding overall connection assembly. This is especially important when using an impact drill. #### 3.3 Screw Installation - Drill Pressure Do not apply excessive pressure on the drill while driving the fastener to prevent fastener buckling or deviation during installation. Only apply the required force or use the recommended holder case to eliminate cam-out effects. in. screws. #### 3.4 Screw Installation - One-Step Process To avoid increased torque peaks caused by stopping and restarting the drive-in process, install the screw in one run until the head is lightly seated against the side member. #### 3.5 Screw Installation - Structural Screws Install properly sized GIGANT screws in all perpendicular holes. For the primary member, use 3/8 in. x 3-1/8 in. screws. For the secondary member (in end-grain), use 3/8 in. x 4-3/4 **Primary Member** Secondary Member ### Optional Measures - Wood Plug Where connectors are housed in the secondary beam, it is recommended to seal the void in the routing below the connector for aesthetics and fire protection. A wood plug may be used, and installation instructions shall be provided by the EOR. # **RICON S VS** ## Pre-Engineered Connection System The RICON S VS connector is an ICC-certified, pre-engineered, beam-to-column and beam-to-beam connector manufactured from mild steel with a welded collar bolt. It consists of two identical parts and is suitable for use in all timber and hybrid-timber construction applications. The RICON S VS has been extensively tested for the North American market. #### Pre-Installable Pre-installable in a controlled shop environment for a faster on-site installation #### Fire-Resistance-Rated Fire-resistance rating up to 2 hours per NDS 2024. # Interstory Drift Performance-Tested Drift ratio exceeding 4% in quasi-static rotational testing ## Fully Concealable Easy to conceal connections, enhancing architectural wood features # Hybrid Construction Compatible Can be installed in wood-towood or wood-to-steel beam or embed plate #### **Drop-in Installation** A fast, streamlined & repeatable installation process that significantly enhances efficiency ### Design - · Wood-to-Wood Design Values - Wood-to-Steel Design Values ### Detailing - General Detailing Information - Detailing RICON S VS 60 Series - Detailing RICON S VS 80 Series - Detailing RICON S VS XL Series - Additional Hanger Placement Considerations #### Installation - Installation Considerations - Routing Information - Tool Requirements - Step-by-Step Installation Guidelines ## **CERTIFICATIONS** ICC-ESR-4300 ISO 50001 Energy Management System # RICON S VS Overview Table 2.1 - RICON S VS Hardware Package Installation Overview | DIC | DIOON OVO | | | eners | Installation | | One Installer | | | |------------|------------------------|---------------|--------------------------|-------|--------------------------|------|---------------|---------------------------------------|-------------------| | RICON S VS | | Plate
Qty. | Primary Member | | Secondary Member | | Time | | With Pilot Holes | | Series | Model | | Туре | Qty. | Туре | Qty. | min. | | | | 60 | RICON S VS
140 x 60 | 2 | VG CSK
5/16" x 3-1/8" | 10 | VG CSK
5/16" x 6-1/4" | 10 | 9 | Produc | ct Kit Details | | 60 | RICON S VS
200 x 60 | 2 | VG CSK
5/16" x 3-1/8" | 16 | VG CSK
5/16" x 6-1/4" | 16 | 13 | *** | | | 00 | RICON S VS
200 x 80 | 2 | VG CSK
3/8" x 4" | 16 | VG CSK
3/8" x 7-7/8" | 16 | 13 | | | | 80 | RICON S VS
290 x 80 | 2 | VG CSK
3/8" x 4" | 20 | VG CSK
3/8" x 7-7/8" | 20 | 14 | · · · · · · · · · · · · · · · · · · · | | | VI | RICON S VS | | VG CSK 3/8" x 4" | 28 | VC COV 2/0" 7 7/0" | 20 | 20 | - 3 | | | XL | XL
390 x 80 | 2 | VG CSK 3/8" x 7-7/8" | 2 | VG CSK 3/8" x 7-7/8" | 30 | 20 | VG CSK | RICON S VS Plates | - Subsequent tabulated capacities in this chapter assume connectors are installed with ASSY VG CSK fasteners specified in this table and in accordance with ICC-ESR 3178 (2024). - The estimated installation time is based on a time study and includes steps for layout and positioning, drilling a 1 in. deep pilot hole for each fastener, and structural screw installation for both plates. Refer to the General Installation Steps (Page 54) for more information. ## RICON S VS Seismic Performance MTC has conducted extensive quasi-static, interstory, and component testing on the RICON S VS connector. The results have demonstrated its robust performance under both axial and drift demands. - The RICON S VS connector is capable of resisting axial forces in excess of 5% of its download capacity while fully loaded in accordance with ASCE 7-22 Sections 1.4.3 and 12.1.4. - The RICON S VS can accommodate drifts of over 4% while fully loaded, which satisfies the drift limits specified in ASCE 7-22 Table 12-12.1. Contact MTC Technical Support for additional details for accommodating seismic loads in your design. # RICON S VS Design Information ## Wood-to-Wood Design Values Table 2.2 - Allowable Loads for RICON S VS in Wood-to-Wood Connections | RICON S VS | | Minimum Secondary Beam
Section Dimensions [in.] | | | | Allowable Loads [lb.] | | | | |------------------|---------------|--|--------------------|---------------------|--------|-------------------------|----------------|--------------|--| | | | | | | | Download
w/o | Download
w/ | Uplift
w/ | | | Model | Configuration | No FRR | 1-hr FRR | 2-hr FRR | | Clip Lock | Clip Lock | Clip Lock | | | | Single | 3-5/8 x 7-5/16 | 5.05/000.44/00 | 8-3/8 x 11-1/16 | ≥ 0.42 | 2,740 | 1,920 | 1,670 | | | RICON
S VS | Siligle | 3-3/0 X 7-3/10 | 5-25/32 x 9-11/32 | 0-3/0 X 11-1/10 | ≥ 0.50 | 3,780 | 2,650 | | | | 140 x 60 | Double | 6-5/16 x 7-5/16 | 8-15/32 x 9-11/32 | 11-1/16 x 11-1/16 | ≥ 0.42 | 4,660 | 3,260 | 4.070 | | | | Double | 0-3/10 X 7-3/10 | 0-13/32 X 9-11/32 | 11-1/10 X 11-1/10 | ≥ 0.50 | 6,410 | 4,490 | 1,670 | | | | Single | 3-5/8 x 9-11/16 | 5-25/32 x 11-23/32 | 8-3/8 x 13-7/16 | ≥ 0.42 | 4,080 | 3,300 | 1,670 | | | RICON
S VS | Siligle | 3-3/8 X 9-11/16 | | | ≥ 0.50 | 4,780 | 3,870 | | | | 200 x 60 | Double | 6-5/16 x 9-11/16 | 8-15/32 x 11-23/32 | 11-1/16 x 13-7/16 | ≥ 0.42 | 6,650 | 5,390 | 1,670 | | | | | | | | ≥ 0.50 | 8,120 | 6,580 | | | | | Single | 4-23/32 x 10-1/4 | 6-9/16 x 12-1/4 | 9-5/32 x 13-31/32 | ≥ 0.42 | 5,600 | 4,540 |
2,420 | | | RICON
S VS | | | | | ≥ 0.50 | 6,880 | 5,570 | | | | 200 x 80 | Double | 8-9/32 x 10-1/4 | 10-1/8 x 12-1/4 | 12-11/16 x 13-31/32 | ≥ 0.42 | 9,820 | 7,950 | 2,420 | | | | | | | | ≥ 0.50 | 12,030 | 9,740 | | | | | Single | 4-23/32 x 12-19/32 | 6-9/16 x 14-5/8 | 9-5/32 x 16-11/32 | ≥ 0.42 | 6,620 | 5,630 | 2.420 | | | RICON
S VS | | 4-23/32 X 12-19/32 | 0-9/10 X 14-3/0 | 9-3/32 X 10-11/32 | ≥ 0.50 | 8,900 | 7,570 | 2,420 | | | 290 x 80 | Double | 8-9/32 x 12-19/32 | 10-1/8 x 14-5/8 | 12-11/16 x 16-11/32 | ≥ 0.42 | 11,890 | 10,110 | 2,420 | | | | Double | 0-9/32 X 12-19/32 | | 12-11/10 X 10-11/32 | ≥ 0.50 | 15,570 | 13,230 | | | | | Single | 4-23/32 x 16-15/16 | 6-9/16 x 19-3/16 | 9-5/32 x 20-7/8 | ≥ 0.42 | 12,400 | 11,040 | 2.420 | | | RICON
S VS XL | Single | | | | ≥ 0.50 | 15,000 | 13,350 | 2,420 | | | 390 x 80 | Double | 0.0/00 40.45/40 | 10 1/0 × 10 2/10 | 12-11/16 x 20-7/8 | ≥ 0.42 | 22,100 | 19,670 | 2,420 | | | | Double | 8-9/32 x 16-15/16 10-1/8 x 19-3/1 | | 12-11/10 X 20-7/0 | ≥ 0.50 | 26,240 | 23,350 | Z,4ZU | | - 1. Connection design must meet all relevant requirements of the General Notes to the Designer section. - 2. Listed allowable loads are applicable for wood-to-wood connections only. - 3. Screw installation must follow the patterns presented in the Installation section. - Allowable single-configuration load values for G ≥ 0.50 are certified in ICC-ESR-4300 (2024). Values for G = 0.42 are IBC-compliant in accordance with ASTM D7147. - 5. Tabulated values that are not dependent on FRR, as well as those for secondary beams with no FRR, are based on minimum end and edge distances. - 6. Minimum dimensions for beams with an FRR are based on minimum wood cover requirements specified in NDS 2024 Chapter 16.5. Beam sizes satisfying an FRR assume a fire-resistant joint compliant with FDS 2024 Section 2.5.1.3 and that any void below the connector in the routing has been sealed with a wood plug. - 7. Tabulated capacities assume members are positioned at beam depths that do not require reinforcement. Refer to Appendix C: Survey of Literature on Reinforcement for Tension Perpendicular to Grain (Page 100) for more information. It is the responsibility of the EOR to ensure the primary and secondary members have adequate capacity to resist connection forces. - 8. Values for systems including the Clip Lock are derived in accordance with ICC-ES AC 13 and ASTM D7147. The Clip Lock system requires the removal of structural fasteners for proper installation. Therefore, the reduced download values shown must be used in conjunction with the Clip Lock system. For more information on the Clip Lock system, refer to Page 37. # Wood-to-Steel Design Values Table 2.3 - Allowable Loads for RICON S VS in Wood-to-Steel Connections | RICON S VS | | Primary | Member | Secondary Member | | | | |------------------|---------------|--|-----------|------------------|-------------------------------|--|--| | | | Weld Req | uirements | Specific | Allowable
Download [lb.] | | | | Model | Configuration | guration Min. Weld Min. Weld Size [in.] Length [in.] | | Gravity [G] | | | | | RICON
S VS | Cimala. | | 2-3/4 | > 0.42 | 2,740 | | | | 140 x 60 | Single | | 2-3/4 | > 0.50 | 3,780 | | | | RICON | 011. | | 4 | > 0.42 | 4,080 | | | | S VS
200 x 60 | Single | | | > 0.50 | 4,780 | | | | RICON
S VS | Cimala | 2/40 | | > 0.42 | 5,600 | | | | 200 x 80 | Single | 3/16 | 4 | > 0.50 | 6,880 | | | | RICON | Cimala | | F 4/0 | > 0.42 | 6,620 | | | | S VS
290 x 80 | Single | | 5-1/2 | > 0.50 | 8,900 | | | | RICON
S VS XL | Cimala | | 7.4/0 | > 0.42 | 12,400 | | | | 390 x 80 | Single | | 7-1/2 | > 0.50 | 15,000 | | | Steel-to-Wood Connection Welded RICON S VS Connection - Tabulated weld values are minimum requirements. Additional weld size or length may be required dependent on loading conditions. Welded connections must be designed by a licensed professional engineer. - 2. Primary member steel must have a thickness of at least 1/4 in. - Welds must conform to the current AWS D1.1 Structural Welding Code—Steel. Follow proper welding procedures and safety precautions. - 4. Welds must be symmetrical on each side of the hanger and be centered within the height of the hanger. - 5. Welded connections are not compatible with the Clip Lock system and are therefore not recommended for uplift conditions. - 6. The RICON S VS can be welded directly to structural steel elements such as steel columns and steel embed plates in concrete walls. - The galvanized coating must be ground off the areas to be welded. ### RICON S VS Clip Lock ### Clip Lock Brace System for Uplift Clip Lock brace systems are additional components available for the RICON S VS beam hanger system. The Clip Lock is a special thin steel plate designed to fit into and lock the RICON S VS beam hanger plates together, yielding a resistance to uplift forces. The Clip Lock is installed with the hanger on the primary beam or column, and as the secondary beam is lowered into place, the Clip Lock will automatically engage the screw heads on the opposite plate, providing resistance to uplift loads. These components are installed using the same screws used to fasten the beam hanger plates into the wood member. A new screw pattern applies to the primary member to allow the Clip Lock to be installed properly, which results in a reduced download capacity. Screws cannot be installed at the prohibited screw locations as they will deform the Clip Lock and prevent it from working properly. Uplift Force Resistance Reduced Downward Force Table 2.4 - Screw Patterns with Clip Lock Brace System (in Primary Member) Clip Lock Mounting Screw Locations Prohibited Screw Locations | | RICON S VS
140 x 60 | RICON S VS
200 x 60 | RICON S VS
200 x 80 | RICON S VS
290 x 80 | RICON S VS XL
390 x 80 | |-------------------|------------------------|------------------------|------------------------|------------------------|---------------------------| | VG CSK Screw Qty. | 7 | 13 | 13 | 17 | 28 | ^{1.} Secondary member is assumed to have fasteners installed as noted in Table 2.1. ### RICON S VS 60 Series - Geometry Requirements ### RICON S VS 60 Series - Connector Geometry Table 2.5 - RICON S VS 60 Geometry | | Мо | del | | | | | | |-----------------------|------------------------|------------------------|--|--|--|--|--| | Connector
Geometry | RICON S VS
140 x 60 | RICON S VS
200 x 60 | | | | | | | | [in.] | | | | | | | | н | 5-1/2 | 7-7/8 | | | | | | | w | 2-3/8 | 2-3/8 | | | | | | | Т | 31/32 | 31/32 | | | | | | #### Note: 1. Refer to Appendix D: Product Specifications (Page 109) for additional product specifications. Table 2.6 - RICON S VS 60 Geometry Requirements for Secondary Member | RICON S VS 60 | | Geometry Requirements [in.] | | | | | | | | | | |------------------|---------------|-------------------------------|------------------|-------------------|------------------|-------------------|------------------|-------------------|------------------|----------------|----------------| | RICO | NICON 3 V3 00 | | | No FRR | | 1-hr FRR | | 2-hr FRR | | | | | Model | Configuration | " p | e _{top} | e _{side} | e _{bot} | e _{side} | e _{bot} | e _{side} | e _{bot} | d _h | s _d | | RICON
S VS | Single | 5-31/32 | 1-13/16 | 5/8 | 0 | 1-23/32 | 2-1/32 | 3 | 3-3/4 | 15/16 | N/A | | 140 x 60 | Double | 5-31/32 | 1-13/16 | 5/8 | 0 | 1-23/32 | 2-1/32 | 3 | 3-3/4 | 15/16 | 5/16 | | RICON | Single | 5-31/32 | 1-13/16 | 5/8 | 0 | 1-23/32 | 2-1/32 | 3 | 3-3/4 | 15/16 | N/A | | S VS
200 x 60 | Double | 5-31/32 | 1-13/16 | 5/8 | 0 | 1-23/32 | 2-1/32 | 3 | 3-3/4 | 15/16 | 5/16 | - 1. Connection design must meet all relevant requirements of the General Notes to the Designer section. - 2. Screw installation must follow the patterns presented in the Installation section. - 3. Tabulated values presented are the minimum required unless noted otherwise. Tabulated values for I_p are fixed. Tabulated values for d_h are maximum values based on a gap between primary and secondary member of 0.039 in. Larger gaps (such as a typical gap of 1/8 in.) will reduce d_h accordingly. - 4. Tabulated values that are not dependent on FRR, as well as those for secondary beams with no FRR, are based on minimum end and edge distances. - 5. Minimum dimensions for beams with an FRR are based on minimum wood cover requirements specified in NDS 2024 Chapter 16.5. Beam sizes satisfying an FRR assume a fire-resistant joint compliant with FDS 2024 Section 2.5.1.3. and that any void below the connector in the routing has been sealed with a wood plug. ### Primary Member Geometry Requirements - Beam/Girder Unhoused Housed Table 2.7 - RICON S VS 60 Geometry Requirements for Primary Member (Beam/Girder) e_{back} | BICO | N e ve co | | Geometry Requirements [in.] | | | | | | | | | | | |------------------|---------------|----------------|-------------------------------|------------------|-------------------|------------------|-------------------|------------------|-------------------|----------------|----------------|--|--| | RICO | RICON S VS 60 | | No FRR 1-hr FRR 2-hr FRR | | r FRR | 4 | | | | | | | | | Model | Configuration | l _p | e _{top} | e _{bot} | e _{back} | e _{bot} | e _{back} | e _{bot} | e _{back} | d _h | S _d | | | | RICON
S VS | Single | 2-27/32 | 1-13/16 | 1-13/16 | 13/32 | 2-1/32 | 1-23/32 | 3-3/4 | 3 | 15/16 | N/A | | | | 140 x 60 | Double | 2-27/32 | 1-13/16 | 1-13/16 | 13/32 | 2-1/32 | 1-23/32 | 3-3/4 | 3 | 15/16 | 5/16 | | | | RICON | Single | 2-27/32 | 1-13/16 | 1-13/16 | 13/32 | 2-1/32 | 1-23/32 | 3-3/4 | 3 | 15/16 | N/A | | | | S VS
200 x 60 | Double | 2-27/32 | 1-13/16 | 1-13/16 | 13/32 | 2-1/32 | 1-23/32 | 3-3/4 | 3 | 15/16 | 5/16 | | | - 1. Connection design must meet all relevant requirements of the General Notes to the Designer section. - 2. Screw installation must follow the patterns presented in the
Installation section. - 3. Tabulated values presented are the minimum required unless noted otherwise. Tabulated values for I_p are fixed. Tabulated values for d_n are maximum values based on a gap between primary and secondary member of 0.039 in. Larger gaps (such as a typical gap of 1/8 in.) will reduce d_n accordingly. - 4. Tabulated values that are not dependent on FRR, as well as those for primary beams with no FRR, are based on minimum end and edge distances. - 5. Minimum dimensions for beams with an FRR are based on minimum wood cover requirements specified in NDS 2024 Chapter 16.5. Beam sizes satisfying an FRR assume a fire-resistant joint compliant with FDS 2024 Section 2.5.1.3. and that any void below the connector in the routing has been sealed with a wood plug. - 6. Values for e_m are minimum requirements based on minimum end and edge distance, and may need to be adjusted to align with the hanger placement in the secondary beam. # 7.55 S. S. C. ### Primary Member Geometry Requirements - Column Unhoused Housed Table 2.8 - RICON S VS 60 Geometry Requirements for Primary Member (Column) | BICO | RICON S VS 60 | | Geometry Requirements [in.] | | | | | | | | | | | |---------------------------|---------------|----------------|-------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------|----------------|--|--| | RICO | | | | No FRR | | 1-hr FRR | | 2-hr FRR | | ا ا | | | | | Model | Configuration | l _p | e _{top} | e _{side} | e _{back} | e _{side} | e _{back} | e _{side} | e _{back} | d _h | s _d | | | | RICON
S VS | Single | 2-27/32 | 1-13/16 | 5/8 | 13/32 | 1-23/32 | 1-23/32 | 3 | 3 | 15/16 | N/A | | | | 140 x 60 | Double | 2-27/32 | 1-13/16 | 5/8 | 13/32 | 1-23/32 | 1-23/32 | 3 | 3 | 15/16 | 5/16 | | | | RICON
S VS
200 x 60 | Single | 2-27/32 | 1-13/16 | 5/8 | 13/32 | 1-23/32 | 1-23/32 | 3 | 3 | 15/16 | N/A | | | | | Double | 2-27/32 | 1-13/16 | 5/8 | 13/32 | 1-23/32 | 1-23/32 | 3 | 3 | 15/16 | 5/16 | | | - 1. Connection design must meet all relevant requirements of the General Notes to the Designer section. - 2. Screw installation must follow the patterns presented in the Installation section. - 3. Tabulated values presented are the minimum required unless noted otherwise. Tabulated values for lp are fixed. Tabulated values for d_n are maximum values based on a gap between primary and secondary member of 0.039 in. Larger gaps (such as a typical gap of 1/8 in.) will reduce d_n accordingly. - 4. Tabulated values that are not dependent on FRR, as well as those for columns with no FRR, are based on minimum end and edge distances. - 5. Minimum dimensions for columns with an FRR are based on connection minimum wood cover requirements specified in NDS 2024 Chapter 16.5. Column sizes satisfying an FRR assume a fire-resistant joint compliant with FDS 2024 Section 2.5.1.3. and that any void below the connector in the routing has been sealed with a wood plug. - 6. Values for em are minimum requirements based on minimum end and edge distance, and may need to be adjusted to align with the hanger placement in the secondary beam. # RICON S VS 80 Series - Geometry Requirements ### RICON S VS 80 Series - Connector Geometry Table 2.9 - RICON S VS 80 Geometry | | Model | | | | | | | | |-----------------------|------------------------|------------------------|--|--|--|--|--|--| | Connector
Geometry | RICON S VS
200 x 80 | RICON S VS
290 x 80 | | | | | | | | | [in.] | | | | | | | | | Н | 7-7/8 | 11-13/32 | | | | | | | | w | 3-5/32 | 3-5/32 | | | | | | | | Т | 31/32 | 31/32 | | | | | | | Note: Refer to Appendix D: Product Specifications (Page 109) for additional product specifications. ### Secondary Member Geometry Requirements Table 2.10 - RICON S VS 80 Geometry Requirements for Secondary Member | BICO | RICON S VS 80 | | Geometry Requirements [in.] | | | | | | | | | | | |---------------------------|---------------|------------|-------------------------------|-------------------|------------------|-------------------|------------------|-------------------|------------------|----------------|----------------|--|--| | RICON 5 V5 60 | | _ | | No FRR | | 1-hr FRR | | 2-hr FRR | | ٨ | | | | | Model | Configuration | ' p | e _{top} | e _{side} | e _{bot} | e _{side} | e _{bot} | e _{side} | e _{bot} | d _h | s _d | | | | RICON
S VS | Single | 7-9/16 | 2-3/8 | 25/32 | 0 | 1-23/32 | 2-1/32 | 3 | 3-3/4 | 15/16 | N/A | | | | 200 x 80 | Double | 7-9/16 | 2-3/8 | 25/32 | 0 | 1-23/32 | 2-1/32 | 3 | 3-3/4 | 15/16 | 13/32 | | | | RICON
S VS
290 x 80 | Single | 7-9/16 | 1-3/16 | 25/32 | 0 | 1-23/32 | 2-1/32 | 3 | 3-3/4 | 15/16 | N/A | | | | | Double | 7-9/16 | 1-3/16 | 25/32 | 0 | 1-23/32 | 2-1/32 | 3 | 3-3/4 | 15/16 | 13/32 | | | - Connection design must meet all relevant requirements of the General Notes to the Designer section. 1. - 2. Screw installation must follow the patterns presented in the Installation section. - Tabulated values presented are the minimum required unless noted otherwise. Tabulated values for I, are fixed. Tabulated values for d, are maximum values based on a gap between primary and 3. secondary member of 0.039 in. Larger gaps (such as a typical gap of 1/8 in.) will reduce d, accordingly. - 4. Tabulated values that are not dependent on FRR, as well as those for secondary beams with no FRR, are based on minimum end and edge distances. - Minimum dimensions for beams with an FRR are based on minimum wood cover requirements specified in NDS 2024 Chapter 16.5. Beam sizes satisfying an FRR assume a fire-resistant 5. joint compliant with FDS 2024 Section 2.5.1.3. and that any void below the connector in the routing has been sealed with a wood plug. Primary Member Geometry Requirements - Beam/Girder Unhoused Housed Table 2.11 - RICON S VS 80 Geometry Requirements for Primary Member (Beam/Girder) | RICON S VS 80 | | | Geometry Requirements [in.] | | | | | | | | | | | |------------------|---------------|----------------|-------------------------------|------------------|-------------------|------------------|-------------------|------------------|-------------------|----------------|----------------|--|--| | | | | | No I | FRR | 1-hr l | FRR | 2-hr FRR | | d | | | | | Model | Configuration | I _p | e _{top} | e _{bot} | e _{back} | e _{bot} | e _{back} | e _{bot} | e _{back} | d _h | s _d | | | | RICON
S VS | Single | 3-5/8 | 2-3/8 | 2-3/8 | 13/32 | 2-3/8 | 1-23/32 | 3-3/4 | 3 | 15/16 | N/A | | | | 200 x 80 | Double | 3-5/8 | 2-3/8 | 2-3/8 | 13/32 | 2-3/8 | 1-23/32 | 3-3/4 | 3 | 15/16 | 13/32 | | | | RICON | Single | 3-5/8 | 1-3/16 | 1-3/16 | 13/32 | 2-1/32 | 1-23/32 | 3-3/4 | 3 | 15/16 | N/A | | | | S VS
290 x 80 | Double | 3-5/8 | 1-3/16 | 1-3/16 | 13/32 | 2-1/32 | 1-23/32 | 3-3/4 | 3 | 15/16 | 13/32 | | | - 1. Connection design must meet all relevant requirements of the General Notes to the Designer section. - Screw installation must follow the patterns presented in the Installation section. - Tabulated values presented are the minimum required unless noted otherwise. Tabulated values for In are fixed. Tabulated values for on a gap 3. between primary and secondary member of 0.039 in. Larger gaps (such as a typical gap of 1/8 in.) will reduce d, accordingly. - Tabulated values that are not dependent on FRR, as well as those for primary beams with no FRR, are based on minimum end and edge distances. - Minimum dimensions for beams with an FRR are based on minimum wood cover requirements specified in NDS 2024 Chapter 16.5. Beam sizes satisfying an FRR assume a fire-resistant joint compliant with FDS 2024 Section 2.5.1.3. and that any void below the connector in the routing has been sealed with a wood plug. - Values for e, are minimum requirements based on minimum end and edge distance, and may need to be adjusted to align with the hanger placement in the secondary beam. ### Primary Member Geometry Requirements - Column Unhoused Housed Table 2.12 - RICON S VS 80 Geometry Requirements for Primary Member (Column) | BICO | N S VS 80 | | Geometry Requirements [in.] | | | | | | | | | | | |------------------|---------------|------------|-------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------|----------------|--|--| | RICO | RICON 3 V3 00 | | | No | FRR | 1-hr | FRR | 2-h | 2-hr FRR | | | | | | Model | Configuration | " p | e _{top} | e _{side} | e _{back} | e _{side} | e _{back} | e _{side} | e _{back} | d _h | s _d | | | | RICON
S VS | Single | 3-5/8 | 2-3/8 | 25/32 | 13/32 | 1-23/32 | 1-23/32 | 3 | 3 | 15/16 | N/A | | | | 200 x 80 | Double | 3-5/8 | 2-3/8 | 25/32 | 13/32 | 1-23/32 | 1-23/32 | 3 | 3 | 15/16 | 13/32 | | | | RICON | Single | 3-5/8 | 1-3/16 | 25/32 | 13/32 | 1-23/32 | 1-23/32 | 3 | 3 | 15/16 | N/A | | | | S VS
290 x 80 | Double | 3-5/8 | 1-3/16 | 25/32 | 13/32 | 1-23/32 | 1-23/32 | 3 | 3 | 15/16 | 13/32 | | | - 1. Connection design must meet all relevant requirements of the General Notes to the Designer section. - 2. Screw installation must follow the patterns presented in the Installation section. - 3. Tabulated values presented are the minimum required unless noted otherwise. Tabulated values for I_p are fixed. Tabulated values for d_p are maximum values based on a gap between primary and secondary member of 0.039 in. Larger gaps (such as a typical gap of 1/8 in.) will reduce d_p accordingly. - 4. Tabulated values that are not dependent on FRR, as well as those for columns with no FRR, are based on minimum end and edge distances. - 5. Minimum dimensions for columns with an FRR are based on connection minimum wood cover requirements specified in NDS 2024 Chapter 16.5. Column sizes satisfying an FRR assume a fire-resistant joint compliant with FDS 2024 Section 2.5.1.3. and that any void below the connector in the routing has been
sealed with a wood plug. - 6. Values for e, are minimum requirements based on minimum end and edge distance, and may need to be adjusted to align with the hanger placement in the secondary beam. # RICON S VS XL - Geometry Requirements ### RICON S VS XL - Connector Geometry Table 2.13 - RICON S VS XL Geometry | | Model | |-----------------------|---------------------------| | Connector
Geometry | RICON S VS XL
390 x 80 | | | [in.] | | H ₁ | 13-3/8 | | H ₂ | 15-11/32 | | Т | 31/32 | | w | 3-5/32 | #### Note: Refer to Appendix D: Product Specifications (Page 109) for additional product specifications. ### Secondary Member Geometry Requirements Table 2.14 - RICON S VS XL 390 x 80 Geometry Requirements for Secondary Member | DICC | RICON S VS XL | | Geometry Requirements [in.] | | | | | | | | | | |---------------------|---------------|----------------|---------------------------------|-------------------|------------------|-------------------|------------------|-------------------|------------------|----------------|----------------|--| | RICON 5 V5 AL | | - | | No FRR | | 1-hr FRR | | 2-hr FRR | | 4 | | | | Model | Configuration | l _p | I _p e _{top} | e _{side} | e _{bot} | e _{side} | e _{bot} | e _{side} | e _{bot} | d _h | s _d | | | RICON | Single | 7-9/16 | 1-9/16 | 25/32 | 1-31/32 | 1-23/32 | 4-7/32 | 3 | 5-29/32 | 15/16 | N/A | | | S VS XL
390 x 80 | Double | 7-9/16 | 1-9/16 | 25/32 | 1-31/32 | 1-23/32 | 4-7/32 | 3 | 5-29/32 | 15/16 | 13/32 | | - Connection design must meet all relevant requirements of the General Notes to the Designer section. 1. - Screw installation must follow the patterns presented in the Installation section. - Tabulated values presented are the minimum required unless noted otherwise. Tabulated values for I, are fixed. Tabulated values for d, are maximum values based on a gap between primary and secondary member of 0.039 in. Larger gaps (such as a typical gap of 1/8 in.) will reduce d, accordingly. - Tabulated values that are not dependent on FRR, as well as those for secondary beams with no FRR, are based on minimum end and edge distances. - Minimum dimensions for beams with an FRR are based on minimum wood cover requirements specified in NDS 2024 Chapter 16.5. Beam sizes satisfying an FRR assume a fire-resistant joint compliant with FDS 2024 Section 2.5.1.3. and that any void below the connector in the routing has been sealed with a wood plug. ### Primary Member Geometry Requirements - Beam/Girder Unhoused Housed Table 2.15 - RICON S VS XL 390 x 80 Geometry Requirements for Primary Member (Beam/Girder) | BICC | RICON S VS XL | | | Geometry Requirements [in.] | | | | | | | | | |---------------------|--------------------|----------------|------------------|-------------------------------|-------------------|------------------|-------------------|------------------|-------------------|----------------|----------------|--| | RICC | RICON 5 V5 AL | | | No FRR | | 1-hr FRR | | 2-hr FRR | | d | | | | Model | odel Configuration | I _p | e _{top} | e _{bot} | e _{back} | e _{bot} | e _{back} | e _{bot} | e _{back} | d _h | s _d | | | RICON | Single | 3-5/8 | 3-17/32 | 1-9/16 | 13/32 | 2-1/4 | 1-23/32 | 3-15/16 | 3 | 15/16 | N/A | | | S VS XL
390 x 80 | Double | 3-5/8 | 3-17/32 | 1-9/16 | 13/32 | 2-1/4 | 1-23/32 | 3-15/16 | 3 | 15/16 | 13/32 | | - 1. Connection design must meet all relevant requirements of the General Notes to the Designer section. - Screw installation must follow the patterns presented in the Installation section. 2. - Tabulated values presented are the minimum required unless noted otherwise. Tabulated values for I, are fixed. Tabulated values for d, are maximum values based on a gap between 3. primary and secondary member of 0.039 in. Larger gaps (such as a typical gap of 1/8 in.) will reduce d_h accordingly. - 4. Tabulated values that are not dependent on FRR, as well as those for primary beams with no FRR, are based on minimum end and edge distances. - 5. Minimum dimensions for beams with an FRR are based on minimum wood cover requirements specified in NDS 2024 Chapter 16.5. Beam sizes satisfying an FRR assume a fireresistant joint compliant with FDS 2024 Section 2.5.1.3. and that any void below the connector in the routing has been sealed with a wood plug. - Values for e, are minimum requirements based on minimum end and edge distance, and may need to be adjusted to align with the hanger placement in the secondary beam. 6. - For any connection with an FRR where the RICON S VS XL is housed in the primary beam, the space below the RICON S VS XL must be filled with noncombustible material. ### Primary Member Geometry Requirements - Column Unhoused Housed Table 2.16 - RICON S VS XL 390 x 80 Geometry Requirements for Primary Member (Column) | BICC | N e Ve VI | | | | Geoi | netry Req | uirement | s [in.] | | | | |------------------|---------------|----------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------|----------------| | RICON S VS XL | | _ | | No | FRR | 1-hr | FRR | 2-h | r FRR | 4 | | | Model | Configuration | l _p | e _{top} | e _{side} | e _{back} | e _{side} | e _{back} | e _{side} | e _{back} | d _h | S _d | | RICON
S VS XL | Single | 3-5/8 | 3-17/32 | 25/32 | 13/32 | 1-23/32 | 1-23/32 | 3 | 3 | 15/16 | N/A | | 390 x 80 | Double | 3-5/8 | 3-17/32 | 25/32 | 13/32 | 1-23/32 | 1-23/32 | 3 | 3 | 15/16 | 13/32 | - 1. Connection design must meet all relevant requirements of the General Notes to the Designer section. - 2. Screw installation must follow the patterns presented in the Installation section. - 3. Tabulated values presented are the minimum required unless noted otherwise. Tabulated values for I_p are fixed. Tabulated values for d_n are maximum values based on a gap between primary and secondary member of 0.039 in. Larger gaps (such as a typical gap of 1/8 in.) will reduce d_n accordingly. - 4. Tabulated values that are not dependent on FRR, as well as those for columns with no FRR, are based on minimum end and edge distances. - 5. Minimum dimensions for columns with an FRR are based on connection minimum wood cover requirements specified in NDS 2024 Chapter 16.5. Column sizes satisfying an FRR assume a fire-resistant joint compliant with FDS 2024 Section 2.5.1.3. and that any void below the connector in the routing has been sealed with a wood plug. - 6. Values for e, are minimum requirements based on minimum end and edge distance, and may need to be adjusted to align with the hanger placement in the secondary beam. - 7. For any connection with an FRR where the RICON S VS XL is housed in the column, the space below the RICON S VS XL must be filled with noncombustible material. ## **Additional Detailing Considerations** ### Geometry Requirements for Columns with Multiple Beam Hangers Table 2.17 - Minimum Column Sizes for Multiple RICON S VS Connectors | | Minimum Column Section Dimensions, b _c x d _c [in. x in.] | | | | | | | | |----------------------|--|-----------------|---------------|--|------------------|----------------|--|--| | Model Series | Hangers on Opposing Faces of a Square Column | | | Column Hangers on Opposing Faces of a Rectangular Colu | | | | | | | No FRR | 1-hr FRR | 2-hr FRR | No FRR | 1-hr FRR | 2-hr FRR | | | | RICON S VS 60 | 8-1/16 x 8-1/16 | 8-1/16 x 8-1/16 | 8-3/8 x 8-3/8 | 3-5/8 x 8-1/16 | 5-25/32 x 8-1/16 | 8-3/8 x 8-1/16 | | | | RICON S VS 80 and XL | 9-5/8 x 9-5/8 | 9-5/8 x 9-5/8 | 9-5/8 x 9-5/8 | 4-23/32 x 9-5/8 | 6-9/16 x 9-5/8 | 9-5/32 x 9-5/8 | | | | | Minimum Column Section Dimensions, b _c x d _c [in. x in.] | | | | | | | | |----------------------|--|--------------------|---|-------------------|-------------------|------------------|--|--| | Model Series | Hanger on | Each Face of a Squ | of a Square Column Hangers on Each Face of a Rectangular Column | | | | | | | | No FRR | 1-hr FRR | 2-hr FRR | No FRR | 1-hr FRR | 2-hr FRR | | | | RICON S VS 60 | 10 x 10 | 10 x 10 | 10 x 10 | 8-1/16 x 10-19/32 | 8-1/16 x 10-19/32 | 8-3/8 x 10-19/32 | | | | RICON S VS 80 and XL | 12-7/32 x 12-7/32 | 12-7/32 x 12-7/32 | 12-7/32 x 12-7/32 | 9-5/8 x 12-7/8 | 9-5/8 x 12-7/8 | 9-5/8 x 12-7/8 | | | #### Notes: - 1. Tabulated column section dimensions are minimum values based on a 1/2 in. clearance between screw tips, minimum edge and end distances, and minimum wood cover requirements for FRR. Refer to Geometry Requirements for further details. - 2. It is the responsibility of the EOR to ensure the primary and secondary members have adequate capacity to resist connection forces. - 3. Tabulated column section dimensions assume hangers are centered within each column face ad are housed in the column as shown. ### Hanger Placement Considerations The hanger placement relative to the height of the beam can impact the need for reinforcement. Connectors in the primary member should have the uppermost fastener in the top 30% of the member depth (0.3d), as shown in the bottom left figure. Connectors in the secondary member should have the lowermost fastener in the bottom 20% (0.2d), as shown in the bottom right figure. Outside of these zones, the primary and secondary members should be checked for splitting to determine if reinforcement is required. For further information, refer to Appendix C: Survey of Literature on Reinforcement for Tension Perpendicular to Grain (Page 100). ### **Skewed and Sloped Configurations** RICON S VS connectors can be installed in sloped or skewed configurations. These configurations may require different fastener lengths for the connector plate installed into the secondary member to prevent the fasteners from
protruding at a steep angle. The connector plate installed into the primary member (e.g., girder beam or a column) has fasteners driven in the side grain. Because this fiber orientation promotes higher withdrawal capacity, the fasteners may be shorter and still sustain the same load. In a typical installation configuration, the connector plate installed into the secondary member has fasteners driven into the end grain. Longer fully threaded screws are used in the secondary member in order to compensate for the reduced withdrawal capacity characteristic of this orientation of the wood fiber. Sloped Configuration: Rafter-to-Ridge Beam Connection Skewed Configuration: Joist-to-Beam Connection In sloped and skewed connections, the connector plate installed into the secondary member has fasteners driven into the grain at an angle relative to the connection angle. The connection benefits from changing the angle-to-grain relationship, and thus respective design values may be achieved with shorter screw lengths in the secondary member. ### Sloped and Skewed Connection Requirements Sloped Configuration: Rafter-to-Ridge Beam Connection (Side View) Skewed Configuration: Joist-to-Beam or Column Connection (Top View) In sloped and skewed connections, the connector placement must adhere to the connection geometry requirements in order to avoid reinforcement. Where connection geometry imposes restrictions, fastener length may be reduced, and allowable connection loads shall be adjusted with the appropriate reduction factor, R_s . For skewed connections ($40^{\circ} \le \theta \le 90^{\circ}$), the connector must be aligned with the centerline of the joist; otherwise, eccentricities and resulting moments must be accounted for by the Engineer of Record. Table 2.18 - Reduction Factor, R_s, for RICON S VS 60 Series | Fastener Length [in.] | β or θ = 90° | β or θ = 80° | β or θ = 70° | β or θ = 60° | β or θ = 50° | β or θ = 40° | |-------------------------|--------------|--------------|--------------|--------------|--------------|--------------| | 6-1/4 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 5-1/2 | 0.9 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 4-3/4 | 0.8 | 0.9 | 0.9 | 1.0 | 1.0 | 1.0 | - 1. Reduced fastener lengths only apply for installation in the secondary member. - 3. Reduction factor values are derived from ETA-10/0189. - Allowable load of the connector must be adjusted with the reduction factor provided in the table. Table 2.19 - Reduction Factor, $R_{\rm s}$, for RICON S VS 80 Series and RICON S VS XL | Fastener Length [in.] | β or θ = 90° | β or θ = 80° | β or θ = 70° | β or θ = 60° | β or θ = 50° | β or θ = 40° | |-------------------------|--------------|--------------|--------------|--------------|--------------|--------------| | 7-7/8 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 7-1/8 | 0.9 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 6-1/4 | 0.8 | 0.9 | 0.9 | 1.0 | 1.0 | 1.0 | | 5-1/2 | 0.7 | 0.8 | 0.8 | 0.9 | 0.9 | 1.0 | ### **Housing Details** ### Housing Possibilities #### Primary Beam Housing - Most common housing for concealed installation - Concealed from below #### Secondary Beam Housing - Joist housing from bottom up - Concealed from below with a wood plug #### Secondary Beam Through Housing - Full-depth housing in joist - Concealed from below with a wood plug - Simplifies fabrication ### Housing and Surface Detailing Housed in Primary Member (Column) Housed in Primary Member (Girder) Housed in Secondary Member (Joist or Purlin) **Parallel Surface:** The members must be parallel at the location of the connection to ensure proper hanger alignment and load transfer. **Gap Size:** The gap size between wood members balances installation ease and fire performance, with larger gaps simplifying installation but reducing fire protection. The gap is typically sized at 1/8 in. [3.2 mm] to address fire protection considerations as outlined in FDS 2024 [refer to Appendix A: Fire Protection (Page 92)]. For proper installation, a minimum gap of 0.039 in. [1 mm] is required to allow the secondary member to slide into place. **Routing Depth:** The routing depth is the depth of the housing, d_h , noted in the Geometry Requirements and Routing Details sections This depth takes into account the thickness of the connector and the gap between members (assumed as 0.039 in. [1 mm] herein - larger gaps will reduce d_h accordingly). **Routing Width:** It is recommended to allow a clearance of 0.039 in. [1 mm] on each side of the connector: - RICON S VS 60 Series: 2.441 in. [62 mm] - RICON S VS 80 Series (including RICON S VS XL): 3.228 in. [82 mm] **Routing Height:** The routing height must be coordinated with the Engineer of Record. The height of the connector in the beam section has an impact on connector performance. Refer to Hanger Placement Considerations (Page 47) for further information. ### **Housing Dimensions** ### Routing in Primary Member Table 2.20 - Routing Dimensions for RICON S VS Housed in Primary Member | | | | | Routing D | imensions, | in. [mm] | | | | |------------------------|-----------------------|------------------------------------|----------------------|----------------------|---------------------|------------------------------------|-------------------|----------------|----------------------| | Model | h _p | h _{p,top} | h | h _{p,bot} | v
Single | v _p
Double | W _e | d _h | R | | RICON S VS 140 x 60 | 7.362 [187] | 4.567 [116] | 3.543 [90] | 0.433 [11] | 2.441 [62] | 5.118 <i>[</i> 130 <i>]</i> | 1.220 [31] | 0.945 [24] | 0.295 [7.5] | | RICON S VS 200 x 60 | 9.724 [247] | 4.567 [116] | 4.724 [120] | 0.433 [11] | 2.441 [62] | 5.118 [130] | 1.220 [31] | 0.945 [24] | 0.295 [7.5] | | RICON S VS 200 x 80 | 10.276 [261] | 5.118 <i>[</i> 130 <i>]</i> | 4.724 [120] | 0.433 [11] | 3.228 [82] | 6.772 [172] | 1.614 [41] | 0.945 [24] | 0.295 [7.5] | | RICON S VS 290 x 80 | 13.638 [321] | 3.937 [100] | 5.906 [150] | 0.433 [11] | 3.228 [82] | 6.772 [172] | 1.614 [41] | 0.945 [24] | 0.295 [7.5] | | RICON S VS XL 390 x 80 | 20.197 [513] | 6.299 [160] | 8.268 [210] | 5.630 [160] | 3.228 [82] | 6.772 [172] | 1.614 [41] | 0.945 [24] | 0.295 [7.5] | #### Notes: - 1. Tabulated values are general guidelines for routing requirements. The EOR and fabricator are responsible for ensuring final routing dimensions account for all project-specific conditions. - 2. Tabulated values are minimum requirements unless noted otherwise. Tabulated values for h and R are fixed. Tabulated values for d, are maximum allowable. - 3. Tabulated values account for 0.039 in [1 mm] on each side of and below the hanger. Larger installation tolerances will increase height and width values accordingly. - 4. Tabulated values are based on a gap of 0.039 in. [1 mm] between the primary and secondary member. Larger gaps (such as a typical gap of 1/8 in.) will reduce d, accordingly. - 5. Refer to the Geometry Requirements tables for each respective beam hanger for additional information. - 6. Tabulated values for h_p and h_{p,bot} for the RICON S VS XL account for a 1-5/16 in. [33.0 mm] gap below the connector to allow the installation of the fasteners. The resulting hidden void should be protected from fire using industry-approved methods. - 7. Manufacturers should adjust the tabulated values based on their specific routing bit sizes if different than R. ### RICON S VS XL - Additional Routing Clearance Requirements An additional housing clearance of 1-5/16 in. [32 mm] must be accounted for during design phase for the 45° inclined screws of the RICON S VS XL. #### Notes: - 1. A bit extender is recommended to facilitate installation. - 2. Values provided in the Housing Dimensions section (Pages 50–51) already accommodate oversized housing. - To satisfy fire-resistance rating requirements, the cavity must be filled with noncombustible material under the direction of the EOR. **Fastener Orientation** **Fastener Orientation** Structural Positioning Screws (Refer to Fastener Layout on Page 53) ### Routing in Secondary Member Table 2.21 - Routing Dimensions for RICON S VS Housed in Secondary Member (Beam-End) | | | | | Routing D | mensions, | in. [mm] | | | | |------------------------|-----------------------|--------------------|----------------------|----------------------|---------------------|------------------------------------|-----------------------|----------------|----------------------| | Model | h _s | h _{s,top} | h | h _{s,bot} | V
Single | v_s
Double | W _e | d _h | R | | RICON S VS 140 x 60 | 5.551 [141] | 2.205 [56] | 3.543 [90] | 2.756 [70] | 2.441 [62] | 5.118 <i>[</i> 130 <i>]</i> | 1.220 [31] | 0.945 [24] | 0.295 [7.5] | | RICON S VS 200 x 60 | 7.913 [201] | 2.205 [56] | 4.724 [120] | 2.756 [70] | 2.441 [62] | 5.118 <i>[</i> 130 <i>]</i> | 1.220 [31] | 0.945 [24] | 0.295 [7.5] | | RICON S VS 200 x 80 | 7.913 [201] | 2.756 [70] | 4.724 [120] | 2.756 [70] | 3.228 [82] | 6.772 [172] | 1.614 [41] | 0.945 [24] | 0.295 [7.5] | | RICON S VS 290 x 80 | 11.457 [291] | 1.575 [40] | 5.906 [150] | 2.756 [70] | 3.228 [82] | 6.772 [172] | 1.614 [41] | 0.945 [24] | 0.295 [7.5] | | RICON S VS XL 390 x 80 | 18.622 [473] | 3.937 [100] | 8.268 [210] | 4.724 [120] | 3.228 [82] | 6.772 [172] | 1.614 [41] | 0.945 [24] | 0.295 [7.5] | - 1. Tabulated values are general guidelines for routing requirements. The EOR and fabricator are responsible for
ensuring final routing dimensions account for all project-specific conditions. - 2. Tabulated values are minimum requirements unless noted otherwise. Tabulated values for h and R are fixed. Tabulated values for d_a are maximum allowable. - 3. Tabulated values account for 0.039 in [1 mm] on each side of and below the hanger. Larger installation tolerances will increase height and width values accordingly. - Tabulated values are based on a gap of 0.039 in. [1 mm] between the primary and secondary member. Larger gaps (such as a typical gap of 1/8 in.) will reduce d, accordingly. - Refer to the Geometry Requirements tables for each respective beam hanger for additional information. - 6. Tabulated values for h and - 7. Manufacturers should adjust the tabulated values based on their specific routing bit sizes if different than R. ## RICON S VS Installation Configurations ### **RICON S VS Connection Applications** ### **Alternative Connection Applications** ### Beam Length Tolerances and Sequencing Installation sequencing is important, especially for buildings with multiple bays of post-and-beam framing. It is recommended to install the beams starting from one end of the building and progress along the column line. The last beam can be produced slightly over length and cut to size on-site to help mitigate any dimensional tolerance challenges. The RICON S VS features tapered collar bolts and openings that facilitate installation by guiding the secondary beam into place. Beams positioned up to 1/4 in. to either side or slightly out from the primary member will self-center as they slide down. ### RICON S VS Installation Procedure ### **Tool Requirements** #### Tools - Use the Correct Bit MTC Solutions fasteners should only be driven using RW bits, or appropriately sized star bits. This ensures good centering and positioning with optimal torque transmission. For the RICON S VS, use an RW 40 bit for 5/16 in. screws and an RW 50 bit for 3/8 in. screws. #### Tools - Use the Correct Drill Use low-RPM, high-torque drills equipped with a feather (variable speed) trigger to install fasteners. Avoid excessive acceleration and deceleration during the drive-in process. Do not overtorque fasteners. Although impact guns are not expressly prohibited, their use is discouraged - particularly for beam hanger systems due to an increased risk of overtorquing. Use the appropriate drill chuck size according to the fastener. Table 2.22 - Recommended Torque, Drill Bits, and Power Drill | Nominal Fastener
Diameter [D] | | HSS Drill
Bit Size | Power
Voltage
Drill | Allowable
Insertion
Torque | |------------------------------------|--------|-----------------------|---------------------------|----------------------------------| | in. | [mm] | in. | ٧ | lbs. · ft. | | 5/16 | [8] | 3/16 | 20 | 12.30 | | 3/8 | [10] | 1/4 | 60 | 22.13 | #### Tools - Predrilling Jig 1/4 in. The Predrilling Jig ensures precise alignment of the RICON S VS XL 30° inclined fasteners. It guides the drill bit to create accurate pilot hole, and ensures proper fastener seating. The hole in the jig accommodates standard imperial and metric drill bit diameters. For the 3/8 in. inclined fasteners, pilot holes 1/4 in. in diameter and 1 in. long are recommended. ### **Fastener Layout** #### **Fastener Orientation** Structural Positioning Screws (without Clip Lock) **Horizontal Screws** Inclined Screws 140 x 60 290 x 80 **RICON S VS XL** 390 x 80 Alternative locations for positioning screws are required when using a Clip Lock System. ### **General Installation Steps** #### **Estimated Installation Time** The estimated time for a single person to install a complete RICON S VS product is shown in Table 2.23. This process includes the following steps: - 1. Layout (~10%–15%) - 2. Positioning (~15%–20%) - 3. Pilot Holes (~20%-30%) - 4. Screw Installation (~45%-55%) - 5. Optional Measures (not included in the time installation % breakdown) The estimated installation time can be improved upon with efficient fabrication and site practices such as: - 1. Drilling pilot holes for the structural positioning screws at the time of fabrication - 2. Utilizing templates to drill pilot holes for structural screws - Optimizing beam positioning to reduce worker fatigue Table 2.23 - RICON S VS Estimated Installation Time | RICON S VS Model | Average Installation
Time [min.] | |------------------|---------------------------------------| | 140 x 60 | 9 | | 200 x 60 | 13 | | 200 x 80 | 13 | | 290 x 80 | 14 | | XL 390 x 80 | 20 | ### Step-by-Step Installation Guidelines #### 1.1 ### Layout - Reference Points Begin by laying out the installation locations in the primary and secondary members using a pencil and square. The connector's point of reference is the top of the beam. The **lower structural positioning screw** should be measured from that point of reference. The **collar bolt** should be at the **bottom** on the primary member and on the **top** on the secondary member. #### 1 2 ### Layout - Split Lamination Considerations It is recommended that vertical joints in split lamination glulam beams be tight at the time of manufacturing. Gaps between adjacent plies may occur due to wood shrinkage. Gaps up to 1/8 in. are acceptable for typical RICON S VS installation. If vertical gaps between plies greater than 1/8 in. exist in the beam-end, the RICON S VS shall be positioned so that fasteners can be installed at least 5/8 in. away from those gaps, as measured from the center of the fastener. Full hanger capacity may be used when installed in this manner. # 2.1 Positioning - Structural Positioning Screw Installation Positioning screws ensure accurate placement of the RICON S VS connector. To facilitate accuracy and installation time, it is recommended to predrill the structural positioning screw locations during member fabrication. Note that structural screws cannot be reused if the connector requires adjustment. Install one structural positioning screw into the hole highlighted at the top of the plate. Check to ensure alignment is maintained and then install the second structural positioning screw into the hole highlighted at the bottom of the plate. **Primary Member** **Secondary Member** #### 3.1 Pilot Holes - Recommendations Pilot holes are optional; however, they facilitate screw thread engagement, help reduce splitting risks, ensure a proper penetration path which reduces screw wandering, and reduce insertion torque. For the structural fasteners used with the RICON S VS series, pilot holes 1/4 in. in diameter and 1 in. in length are recommended. The use of MTC Predrilling Jig for the inclined screws of the RICON S VS XL is recommended to ensure proper hole placement. ### 4.1 Screw Installation - Align Drill Bit Axis Align the drill bit axis parallel to the fastener axis during installation to allow proper torque transmission and to avoid stripping. ### 4.2 Screw Installation - Decrease RPM To avoid overtorquing the screw, decrease the rotation speed about 1/2 in. away from the final installed position. This is crucial to prevent wood crushing due to overtorquing, which can impact beam hanger tolerances, potentially impeding overall connection assembly. This is especially important when using an impact drill. #### 4.3 Screw Installation - Drill Pressure Do not apply excessive pressure on the drill while driving the fastener to prevent fastener buckling or deviation during installation. Only apply the required force or use the recommended holder case to eliminate cam-out effects. ### 4.4 Screw Installation - One-Step Process To avoid increased torque peaks caused by stopping and restarting the drive-in process, install the screw in one run until the head is lightly seated against the side member. If necessary, a torque wrench may be used to complete installation immediately after the screw has been driven. #### 4.5 Screw Installation - Structural Screws Install properly sized VG CSK screws in all perpendicular holes. If using a Clip Lock system, refer to Step 5.1 and Page 37 for further information. For the RICON S VS XL only: install $3/8" \times 7-7/8"$ VG CSK screws into all angled holes after all 90° horizontal screws have been installed. ### Optional Measures - Clip Lock Installation The Clip Lock system must be installed with a modified screw pattern in the primary member. Refer to Page 37 for further details on the screw pattern for the Clip Lock. ### 5.2 Optional Measures - Wood Plug Where connectors are housed in the secondary beam, it is recommended to seal the void in the routing below the connector for aesthetics and fire protection. A wood plug may be used, and installation instructions shall be provided by the EOR. 0 0 # **MEGANT** ### Pre-Engineered Connection System The MEGANT is a pre-engineered beam-to-beam and beam-to-column connector manufactured from aluminum and consisting of plates and threaded rods for securing the connection. The MEGANT has been tested for the North American market. ### Pre-Installable Pre-installable in a controlled shop environment for a faster on-site installation ### Multi-Direction Installation Installable from all directions (top, bottom, and sides) #### Fire-Resistance-Rated Fire-resistance rating up to 2 hours per NDS 2024 ### Interstory Drift Tested Drift ratio exceeding 4% in quasi-static rotational testing # Test-Derived Allowable Loads Allowable loads derived in accordance with ASTM D7147 and ICC-ES AC13 and AC233 ### Drop-in Installation A fast, streamlined repeatable installation process that significantly enhances efficiency ### Design · Wood-to-Wood Design Values ### Detailing - General Detailing Information - Detailing MEGANT 60 Series - Detailing MEGANT 100 Series - Detailing MEGANT 150 Series - Additional Hanger Placement Considerations #### Installation - Installation Considerations - · Routing Information - Tool Requirements - · Step-by-Step Installation Guidelines ### **CERTIFICATIONS** #### ISO
50001 Energy Management System ETA-15/0667 2019 ### **MEGANT** Overview Table 3.1 - MEGANT Hardware Package Installation Overview | M | MEGANT | | Fasteners | | Threaded Rods | | Installation | | |--------|---------------------|------|--------------------------|--------------------------|---|--|--------------|----| | IVI | LGANT | Qty. | Type | Qty. | Tilleaueu Rous | | Time | | | Series | Model | | 1,400 | Gty. | Type Qty. | | Min. | | | | MEGANT
310 x 60 | | VG CSK
5/16" x 6-1/4" | 24 | M20 x 340 [13-3/8"]
Grade 8.8 | 1 | 17 | | | 60 | MEGANT
430 x 60 | 2 | VG CSK
5/16" x 6-1/4" | 32 | M20 x 460 [18-1/4"]
Grade 8.8 | 1 | 21 | | | | MEGANT
550 x 60 | | VG CSK
5/16" x 6-1/4" | 40 | M20 x 580 [22-7/8"]
Grade 8.8 | 1 | 24 | | | | MEGANT
310 x 100 | | VG CSK
5/16" x 6-1/4" | 34 | M16 x 340 [13-3/8"]
Grade 8.8 | 2 | 23 | | | 100 | MEGANT
430 x 100 | 2 | 2 | VG CSK
5/16" x 6-1/4" | 46 | M16 x 460 [18-1/4"]
<i>Grade</i> 8.8 | 2 | 27 | | | MEGANT
550 x 100 | | VG CSK
5/16" x 6-1/4" | 58 | M16 x 580 [22-7/8"]
Grade 8.8 | 2 | 32 | | | | MEGANT
310 x 150 | | VG CSK
5/16" x 6-1/4" | 48 | M20 x 340 [13-3/8"]
Grade 8.8 | 1 | 31 | | | 150 | MEGANT
430 x 150 | 2 | VG CSK
5/16" x 6-1/4" | 64 | M20 x 460 [18-1/4"]
Grade 8.8 | 2 | 37 | | | 150 | MEGANT
550 x 150 | 2 | VG CSK
5/16" x 6-1/4" | 80 | M20 x 580 [22-7/8"]
Grade 8.8 | 3 | 44 | | | | MEGANT
730 x 150 | | VG CSK
5/16" x 6-1/4" | 104 | M20 x 760 [30"]
Grade 8.8 | 3 | 53 | | #### Notes: - Subsequent tabulated capacities in this chapter assume connectors are installed with fasteners specified ASSY VG CSK fasteners specified in this table and in accordance with ICC-ESR 3178 (2024). - The estimated installation time is based on a time study and includes steps for layout and positioning, drilling a 1 in. deep pilot hole for each fastener, structural screw installation for both plates, clamping jaw installation, and threaded rod installation. Refer to the General Installation Steps (Page 81) for more information. #### Product Kit Details - 1 Threaded Rod - 2 Threaded Clamping Jaw - 3 Hex Nut - 4 Washer - **5** Connector Plates - 6 Clamping Jaw - 7) VG CSK ### **MEGANT Force Transfer Principle** The following figures highlight the flow of forces through various components of the MEGANT connector, showing why the fasteners and connector must be installed as specified. ### **MEGANT Seismic Performance** MTC has conducted extensive quasi-static, interstory, and component testing on the MEGANT connector. The results have demonstrated its robust performance under both axial and drift demands. - The MEGANT connector is capable of resisting axial forces in excess of 5% of its download capacity while fully loaded in accordance with ASCE 7-22 Sections 1.4.3 and 12.1.4. - The MEGANT connector can accommodate drifts over 4% while fully loaded, which satisfies the drift limits specified in ASCE 7-22 Table 12-12.1. Contact MTC Technical Support for additional details for accommodating seismic loads in your design. # **MEGANT Design Information** ### Wood-to-Wood Design Values Table 3.2 - Allowable Loads for MEGANT in Wood-to-Wood Connections | М | EGANT | | nimum Secondary Bea
ection Dimensions [in | | Specific
Gravity | Allowable Download | |---------------------|---------------|--------------------|---|---------------------|---------------------|--------------------| | Model | Configuration | No FRR | 1-hr FRR | 2-hr FRR | [G] | [10.] | | | O' a a la | 0.45/0040.5/00 | 5 05/00 40 40/00 | 0.0/0.40.0/00 | ≥ 0.42 | 8,660 | | MEGANT | Single | 3-15/32 x 16-5/32 | 5-25/32 x 16-13/32 | 8-3/8 x 18-3/32 | ≥ 0.50 | 9,820 | | 310 x 60 | Davible | C 4/20 4C E/20 | 0.5/40 40.40/20 | 40.00/20 40.0/20 | ≥ 0.42 | 14,722 | | | Double | 6-1/32 x 16-5/32 | 8-5/16 x 16-13/32 | 10-29/32 x 18-3/32 | ≥ 0.50 | 16,694 | | | Single | 3-15/32 x 20-7/8 | 5-25/32 x 21-1/8 | 8-3/8 x 22-13/16 | ≥ 0.42 | 11,350 | | MEGANT | Single | 3-13/32 X 20-7/6 | 5-25/32 X 21-1/6 | 0-3/0 X 22-13/16 | ≥ 0.50 | 12,830 | | 430 x 60 | Double | 6-1/32 x 20-7/8 | 8-5/16 x 21-1/8 | 10-29/32 x 22-13/16 | ≥ 0.42 | 19,295 | | | Double | 0-1/32 X 20-7/6 | 0-5/10 X 21-1/0 | 10-23/32 X 22-13/10 | ≥ 0.50 | 21,811 | | | Single | 3-15/32 x 25-19/32 | 5-25/32 x 25-27/32 | 8-3/8 x 27-9/16 | ≥ 0.42 | 12,830 | | MEGANT | Siligle | 3-13/32 X 23-19/32 | 3-23/32 X 23-21/32 | 0-3/0 X 2/-9/10 | ≥ 0.50 | 12,030 | | 550 x 60 | Double | 6-1/32 x 25-19/32 | 8-5/16 x 25-27/32 | 10-29/32 x 27-9/16 | ≥ 0.42 | 21,811 | | | Double | 0-1/02 X 20-10/02 | 0-3/10 X 23-2/102 | 10-23/02 X 27-3/10 | ≥ 0.50 | 21,011 | | | Single | 5-1/32 x 14-13/16 | 7-11/32 x 16-1/4 | 9-15/16 x 17-15/16 | ≥ 0.42 | 11,140 | | MEGANT | Onigie | 0-1/02 X 14-10/10 | 7-11/02 X 10-1/4 | 3-10/10 X 17-13/10 | ≥ 0.50 | 12,610 | | 310 x 100 | Double | 9-1/8 x 14-13/16 | 11-7/16 x 16-1/4 | 14-1/32 x 17-15/16 | ≥ 0.42 | 18,938 | | | 2000.0 | | | | ≥ 0.50 | 21,437 | | | Single | 5-1/32 x 19-17/32 | 7-11/32 x 20-31/32 | 9-15/16 x 22-21/32 | ≥ 0.42 | 15,630 | | MEGANT | | - 1/01 X 10 11/01 | | 0 10/10 X 22 2 1/02 | ≥ 0.50 | 17,700 | | 430 x 100 | Double | 9-1/8 x 19-17/32 | 11-7/16 x 20-31/32 | 14-1/32 x 22-21/32 | ≥ 0.42 | 26,571 | | | | | | | ≥ 0.50 | 30,090 | | | Single | 5-1/32 x 24-1/4 | 7-11/32 x 25-11/16 | 9-15/16 x 27-3/8 | ≥ 0.42 | 19,500 | | MEGANT | | | | | ≥ 0.50 | , | | 550 x 100 | Double | 9-1/8 x 24-1/4 | 11-7/16 x 25-11/16 | 14-1/32 x 27-3/8 | ≥ 0.42 | 33,150 | | | | | | | ≥ 0.50 | · | | | Single | 7 x 14-13/16 | 9-5/16 x 16-1/4 | 11-29/32 x 17-15/16 | ≥ 0.42 | 14,410 | | MEGANT | | | | | ≥ 0.50 | 16,320 | | 310 x 150 | Double | 13-1/16 x 14-13/16 | 15-3/8 x 16-1/4 | 17-31/32 x 17-15/16 | ≥ 0.42 | 24,497 | | | | | | | ≥ 0.50 | 27,744 | | | Single | 7 x 19-17/32 | 9-5/16 x 20-31/32 | 11-29/32 x 22-21/32 | ≥ 0.42 | 24,020 | | MEGANT | _ | | | | ≥ 0.50 | 27,200 | | 430 x 150 | Double | 13-1/16 x 19-17/32 | 15-3/8 x 20-31/32 | 17-31/32 x 22-21/32 | ≥ 0.42 | 40,834 | | | | | | | ≥ 0.50 | 46,240 | | | Single | 7 x 24-1/4 | 9-5/16 x 25-11/16 | 11-29/32 x 27-3/8 | ≥ 0.42 | 28,030 | | MEGANT
550 x 150 | | | | | ≥ 0.50 | 31,730 | | 330 X 130 | Double | 13-1/16 x 24-1/4 | 15-3/8 x 25-11/16 | 17-31/32 x 27-3/8 | ≥ 0.42 | 47,651 | | | | | | ≥ 0.50 | 53,941 | | | | Single | 7 x 30-15/16 | 9-5/16 x 32-25/32 | 11-29/32 x 34-15/32 | ≥ 0.42 | 32,630 | | MEGANT
730 x 150 | | | | | ≥ 0.50 | | | . 55 X 100 | Double | 13-1/16 x 30-15/16 | 15-3/8 x 32-25/32 | 17-31/32 x 34-15/32 | ≥ 0.42 | 55,471 | | | | | | | ≥ 0.50 | | - 1. Connection design must meet all relevant requirements of the General Notes to the Designer section. - 2. Screw installation must follow the patterns presented in the Installation and Tolerances section. - 3. Tabulated allowable load capacities are derived in accordance with ASTM D7147 and ICC-ES AC13 and AC233. - 4. Minimum dimensions for secondary members are derived from minimum fastener end and edge distances and apply to scenarios without FRR only. - 5. Tabulated capacities assume members are positioned at beam depths such that reinforcement is not required [refer to Appendix C (Page 100) for more information]. It is the responsibility of the EOR to ensure the primary and secondary members have adequate capacity to resist connection forces. # MEGANT 60 Series - Geometry Requirements ### MEGANT 60 Series - Connector Geometry Table 3.3 - MEGANT 60 Geometry | | | Model | | |-----------------------|--------------------|--------------------|--------------------| | Connector
Geometry | MEGANT
310 x 60 | MEGANT
430 x 60 | MEGANT
550 x 60 | | | | [in.] | | | H ₁ | 12-7/32 | 16-15/16 | 21-21/32 | | H_2 | 9-27/32 | 14-9/16 | 19-9/32 | | T ₁ | 1-9/16 | 1-9/16 | 1-9/16 | | T ₂ | 25/32 | 25/32 | 25/32 | | w | 2-3/8 | 2-3/8 | 2-3/8 | ^{1.} Refer to Appendix D: Product Specifications (Page 109) for additional product specifications. ### Secondary Member Geometry Requirements Unhoused Housed Table 3.4 - MEGANT 60 Geometry Requirements for Secondary Member | MEGANT 60 | | | Geometry Requirements [in.] | | | | | | | | | | | |-----------|---------------|----------------|-------------------------------|-------------------|------------------|-------------------|------------------|-------------------|------------------|----------------|----------------|--|--| | | | | | No | FRR | 1-hr FRR | | 2-hr FRR | | 4 | | | | | Model | Configuration | l _p | e _{top} | e _{side} | e _{bot} | e _{side} | e _{bot} | e _{side} | e _{bot} | d _h | s _d | | | | MEGANT | Single | 5-31/32 | 1-31/32 | 9/16 | 3-5/32 | 1-23/32 | 3-13/32 | 3 | 5-3/32 | 1-17/32 | N/A | | | | 310 x 60 | Double | 5-31/32 | 1-31/32 | 9/16 | 3-5/32 | 1-23/32 | 3-13/32 | 3 | 5-3/32 | 1-17/32 | 3/16 | | | | MEGANT | Single | 5-31/32 | 1-31/32 | 9/16 | 3-5/32 | 1-23/32 | 3-13/32 | 3 | 5-3/32 | 1-17/32 | N/A | | | | 430 x 60 | Double | 5-31/32 | 1-31/32 | 9/16 | 3-5/32 | 1-23/32 | 3-13/32 | 3 | 5-3/32 | 1-17/32 | 3/16 | | | | MEGANT | Single | 5-31/32 | 1-31/32 | 9/16 | 3-5/32 | 1-23/32 | 3-13/32 | 3 | 5-3/32 | 1-17/32 | N/A | | | | 550 x 60 | Double | 5-31/32 | 1-31/32 | 9/16 | 3-5/32 | 1-23/32 | 3-13/32 | 3 | 5-3/32 | 1-17/32 | 3/16 | | | - 1. Connection design must meet all relevant requirements of the General Notes to the Designer section. - 2. Screw installation must follow the patterns presented in the Installation section. - 3. Tabulated values are minimum requirements unless noted otherwise. Tabulated values for I_p are fixed. Tabulated values for d_p are maximum values based on a gap of 0.039 in. [1 mm] between the primary and secondary member. Larger gaps (such as a typical gap of 1/8 in.) will reduce d_p accordingly. - 4. Tabulated values that are not dependent on FRR, as well as those for secondary beams
with no FRR, are based on minimum end and edge distances. - 5. Minimum dimensions for beams with an FRR are based on minimum wood cover requirements specified in NDS 2024 Chapter 16.5. Beam sizes satisfying an FRR assume a fire-resistant joint compliant with FDS 2024 Section 2.5.1.3. and that any void below the connector in the routing has been sealed with a wood plug. The tip of the inclined screws are permitted to penetrate the minimum wood cover. - 6. Dimensions for 1-hr and 2-hr FRRs are based on the unthreaded jaw being installed on top, with the threaded rod and nut being installed from above as shown in the examples above. ### Primary Member Geometry Requirements - Beam/Girder Unhoused Housed Table 3.5 - MEGANT 60 Geometry Requirements for Primary Member (Beam/Girder) | MEGANT 60 | | | Geometry Requirements [in.] | | | | | | | | | | | | |--------------------|---------------|----------------|-------------------------------|------------------|-------------------|------------------|-------------------|------------------|-------------------|----------------|----------------|--|--|--| | | | _ | | No I | FRR | 1-hr l | FRR | 2-1 | ır FRR | 4 | _ | | | | | Model | Configuration | I _p | e _{top} | e _{bot} | e _{back} | e _{bot} | e _{back} | e _{bot} | e _{back} | d _h | S _d | | | | | MEGANT | Single | 5-31/32 | 3-5/32 | 1-31/32 | 13/32 | 2-1/4 | 1-23/32 | 3-15/16 | 3 | 1-17/32 | N/A | | | | | 310 x 60 | Double | 5-31/32 | 3-5/32 | 1-31/32 | 13/32 | 2-1/4 | 1-23/32 | 3-15/16 | 3 | 1-17/32 | 3/16 | | | | | MEGANT | Single | 5-31/32 | 3-5/32 | 1-31/32 | 13/32 | 2-1/4 | 1-23/32 | 3-15/16 | 3 | 1-17/32 | N/A | | | | | 430 x 60 | Double | 5-31/32 | 3-5/32 | 1-31/32 | 13/32 | 2-1/4 | 1-23/32 | 3-15/16 | 3 | 1-17/32 | 3/16 | | | | | MEGANT
550 x 60 | Single | 5-31/32 | 3-5/32 | 1-31/32 | 13/32 | 2-1/4 | 1-23/32 | 3-15/16 | 3 | 1-17/32 | N/A | | | | | | Double | 5-31/32 | 3-5/32 | 1-31/32 | 13/32 | 2-1/4 | 1-23/32 | 3-15/16 | 3 | 1-17/32 | 3/16 | | | | - 1. Connection design must meet all relevant requirements of the General Notes to the Designer section. - 2. Screw installation must follow the patterns presented in the Installation section. - 3. Tabulated values are minimum requirements unless noted otherwise. Tabulated values for I_n are fixed. Tabulated values for o_n are maximum values based on a gap of 0.039 in. [1 mm] between the primary and secondary member. Larger gaps (such as a typical gap of 1/8 in.) will reduce d, accordingly. - 4. Tabulated values that are not dependent on FRR, as well as those for primary beams with no FRR, are based on minimum end and edge distances. - Minimum dimensions for beams with an FRR are based on minimum wood cover requirements specified in NDS 2024 Chapter 16.5. Beam sizes satisfying an FRR assume a fire-resistant joint compliant with FDS 2024 Section 2.5.1.3. and that any void below the connector in the routing has been sealed with a wood plug. The tip of the inclined screws are permitted to penetrate the minimum wood cover. - Values for e_m are minimum requirements based on minimum end and edge distance, and may need to be adjusted to align with the hanger placement in the secondary beam - Dimensions for 1-hr and 2-hr FRRs are based on the threaded jaw being installed on the bottom, with the threaded rod and nut being installed from above as shown in the examples above. ### Primary Member Geometry Requirements - Column Unhoused Housed Table 3.6 - MEGANT 60 Geometry Requirements for Primary Member (Column) | MEGANT 60 | | | Geometry Requirements [in.] | | | | | | | | | | | | |-----------|---------------|----------------|-------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------|----------------|--|--|--| | | | _ | | No I | FRR | 1-hr | 1-hr FRR | | ır FRR | d | | | | | | Model | Configuration | l _p | e _{top} | e _{side} | e _{back} | e _{side} | e _{back} | e _{side} | e _{back} | d _h | s _d | | | | | MEGANT | Single | 5-31/32 | 3-5/32 | 9/16 | 13/32 | 1-23/32 | 1-23/32 | 3 | 3 | 1-17/32 | N/A | | | | | 310 x 60 | Double | 5-31/32 | 3-5/32 | 9/16 | 13/32 | 1-23/32 | 1-23/32 | 3 | 3 | 1-17/32 | 3/16 | | | | | MEGANT | Single | 5-31/32 | 3-5/32 | 9/16 | 13/32 | 1-23/32 | 1-23/32 | 3 | 3 | 1-17/32 | N/A | | | | | 430 x 60 | Double | 5-31/32 | 3-5/32 | 9/16 | 13/32 | 1-23/32 | 1-23/32 | 3 | 3 | 1-17/32 | 3/16 | | | | | MEGANT | Single | 5-31/32 | 3-5/32 | 9/16 | 13/32 | 1-23/32 | 1-23/32 | 3 | 3 | 1-17/32 | N/A | | | | | 550 x 60 | Double | 5-31/32 | 3-5/32 | 9/16 | 13/32 | 1-23/32 | 1-23/32 | 3 | 3 | 1-17/32 | 3/16 | | | | - 1. Connection design must meet all relevant requirements of the General Notes to the Designer section. - 2. Screw installation must follow the patterns presented in the Installation section. - 3. Tabulated values presented are minimum requirements unless noted otherwise. Tabulated values for I_p are fixed. Tabulated values for d_p are maximum values based on a gap of 0.039 in. [1 mm] between the primary and secondary member. Larger gaps (such as a typical gap of 1/8 in.) will reduce d_p accordingly. - 4. Tabulated values that are not dependent on FRR, as well as those for columns with no FRR, are based on minimum end and edge distances. - 5. Minimum dimensions for columns with an FRR are based on minimum wood cover requirements specified in NDS 2024 Chapter 16.5. Column sizes satisfying an FRR assume a fire-resistant joint compliant with FDS 2024 Section 2.5.1.3. and that any void below the connector in the routing has been sealed with a wood plug. The tip of the inclined screws are permitted to penetrate the minimum wood cover. - 6. Values for e, are minimum requirements based on minimum end and edge distance, and may need to be adjusted to align with the hanger placement in the secondary beam. - 7. Dimensions for 1-hr and 2-hr FRRs are based on the threaded jaw being installed on the bottom, with the threaded rod and nut being installed from above as shown in the examples above. # MEGANT 100 Series - Geometry Requirements ### MEGANT 100 Series - Connector Geometry Table 3.7 - MEGANT 100 Geometry | | | Model | | |-----------------------|---------------------|---------------------|---------------------| | Connector
Geometry | MEGANT
310 x 100 | MEGANT
430 x 100 | MEGANT
550 x 100 | | | | [in.] | | | H ₁ | 12-7/32 | 16-15/16 | 21-21/32 | | H ₂ | 9-27/32 | 14-9/16 | 19-9/32 | | T, | 1-9/16 | 1-9/16 | 1-9/16 | | T ₂ | 25/32 | 25/32 | 25/32 | | w | 3-15/16 | 3-15/16 | 3-15/16 | #### Note: 1. Refer to Appendix D: Product Specifications (Page 109) for additional product specifications. # Secondary Member Geometry Requirements Table 3.8 - MEGANT 100 Geometry Requirements for Secondary Member | MEGANT 100 | | | Geometry Requirements [in.] | | | | | | | | | | | |---------------------|---------------|----------------|-------------------------------|-------------------|------------------|-------------------|------------------|-------------------|------------------|----------------|----------------|--|--| | | | | | No | FRR | 1-hr FRR | | 2-hr FRR | | 4 | | | | | Model | Configuration | l _p | e _{top} | e _{side} | e _{bot} | e _{side} | e _{bot} | e _{side} | e _{bot} | d _h | s _d | | | | MEGANT | Single | 5-31/32 | 1-13/16 | 9/16 | 1-31/32 | 1-23/32 | 3-13/32 | 3 | 5-3/32 | 1-17/32 | N/A | | | | 310 x 100 | Double | 5-31/32 | 1-13/16 | 9/16 | 1-31/32 | 1-23/32 | 3-13/32 | 3 | 5-3/32 | 1-17/32 | 5/32 | | | | MEGANT | Single | 5-31/32 | 1-13/16 | 9/16 | 1-31/32 | 1-23/32 | 3-13/32 | 3 | 5-3/32 | 1-17/32 | N/A | | | | 430 x 100 | Double | 5-31/32 | 1-13/16 | 9/16 | 1-31/32 | 1-23/32 | 3-13/32 | 3 | 5-3/32 | 1-17/32 | 5/32 | | | | MEGANT
550 x 100 | Single | 5-31/32 | 1-13/16 | 9/16 | 1-31/32 | 1-23/32 | 3-13/32 | 3 | 5-3/32 | 1-17/32 | N/A | | | | | Double | 5-31/32 | 1-13/16 | 9/16 | 1-31/32 | 1-23/32 | 3-13/32 | 3 | 5-3/32 | 1-17/32 | 5/32 | | | - 1. Connection design must meet all relevant requirements of the General Notes to the Designer section. - Screw installation must follow the patterns presented in the Installation section. 2. - Tabulated values presented are minimum requirements unless noted otherwise. Tabulated values for In are fixed. Tabulated values for dn are maximum values based on a gap of 0.039 in. [1 mm] between the primary and secondary member. Larger gaps (such as a typical gap of 1/8 in.) will reduce d accordingly. - Tabulated values that are not dependent on FRR, as well as those for secondary beams with no FRR, are based on minimum end and edge distances. - Minimum dimensions for beams with an FRR are based on minimum wood cover requirements specified in NDS 2024 Chapter 16.5. Beam sizes satisfying an FRR assume a fire-resistant joint compliant with FDS 2024 Section 2.5.1.3. and that any void below the connector in the routing has been sealed with a wood plug. The tip of the inclined screws are permitted to penetrate the minimum wood cover. - Dimensions for 1-hr and 2-hr FRRs are based on the unthreaded jaw being installed on top, with the threaded rod and nut being installed from above as shown in the examples above. ### Primary Member Geometry Requirements - Beam/Girder Unhoused Housed Table 3.9 - MEGANT 100 Geometry Requirements for Primary Member (Beam/Girder) | MEGANT 100 | | | Geometry Requirements [in.] | | | | | | | | | | | |------------|---------------|----------------|-------------------------------|------------------|-------------------|------------------|-------------------|------------------|-------------------|----------------|----------------|--|--| | | | _ | | No FRR | | 1-hr FRR | | 2-h | r FRR | d | | | | | Model | Configuration | l _p | e _{top} | e _{bot} | e _{back} | e _{bot} | e _{back} | e _{bot} | e _{back} | d _h | s _d | | | | MEGANT | Single | 5-31/32 | 3 | 1-13/16 | 13/32 | 2-1/4 | 1-23/32 | 3-15/16 | 3 | 1-17/32 | N/A | | | | 310 x 100 | Double | 5-31/32 | 3 |
1-13/16 | 13/32 | 2-1/4 | 1-23/32 | 3-15/16 | 3 | 1-17/32 | 5/32 | | | | MEGANT | Single | 5-31/32 | 3 | 1-13/16 | 13/32 | 2-1/4 | 1-23/32 | 3-15/16 | 3 | 1-17/32 | N/A | | | | 430 x 100 | Double | 5-31/32 | 3 | 1-13/16 | 13/32 | 2-1/4 | 1-23/32 | 3-15/16 | 3 | 1-17/32 | 5/32 | | | | MEGANT | Single | 5-31/32 | 3 | 1-13/16 | 13/32 | 2-1/4 | 1-23/32 | 3-15/16 | 3 | 1-17/32 | N/A | | | | 550 x 100 | Double | 5-31/32 | 3 | 1-13/16 | 13/32 | 2-1/4 | 1-23/32 | 3-15/16 | 3 | 1-17/32 | 5/32 | | | - Connection design must meet all relevant requirements of the General Notes to the Designer section. 1. - 2. Screw installation must follow the patterns presented in the Installation section. - 3. Tabulated values presented are minimum requirements unless noted otherwise. Tabulated values for In are fixed. Tabulated values for dn are maximum values based on a gap of 0.039 in. [1 mm] between the primary and secondary member. Larger gaps (such as a typical gap of 1/8 in.) will reduce d, accordingly. - 4. Tabulated values that are not dependent on FRR, as well as those for primary beams with no FRR, are based on minimum end and edge distances. - Minimum dimensions for beams with an FRR are based on minimum wood cover requirements specified in NDS 2024 Chapter 16.5. Beam sizes satisfying an FRR 5. assume a fire-resistant joint compliant with FDS 2024 Section 2.5.1.3. and that any void below the connector in the routing has been sealed with a wood plug. The tip of the inclined screws are permitted to penetrate the minimum wood cover. - Values for e_m are minimum requirements based on minimum end and edge distance, and may need to be adjusted to align with the hanger placement in the secondary 6. - 7. Dimensions for 1-hr and 2-hr FRRs are based on the threaded jaw being installed on the bottom, with the threaded rod and nut being installed from above as shown in the examples above. ### Primary Member Geometry Requirements - Column Unhoused Housed Table 3.10 - MEGANT 100 Geometry Requirements for Primary Member (Column) | MEGANT 100 | | | Geometry Requirements [in.] | | | | | | | | | | | | |------------|---------------|----------------|-------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------|----------------|--|--|--| | | | | | No I | FRR | 1-hr FRR | | 2-hr FRR | | a | | | | | | Model | Configuration | I _p | e _{top} | e _{side} | e _{back} | e _{side} | e _{back} | e _{side} | e _{back} | d _h | s _d | | | | | MEGANT | Single | 5-31/32 | 3 | 9/16 | 13/32 | 1-23/32 | 1-23/32 | 3 | 3 | 1-17/32 | N/A | | | | | 310 x 100 | Double | 5-31/32 | 3 | 9/16 | 13/32 | 1-23/32 | 1-23/32 | 3 | 3 | 1-17/32 | 5/32 | | | | | MEGANT | Single | 5-31/32 | 3 | 9/16 | 13/32 | 1-23/32 | 1-23/32 | 3 | 3 | 1-17/32 | N/A | | | | | 430 x 100 | Double | 5-31/32 | 3 | 9/16 | 13/32 | 1-23/32 | 1-23/32 | 3 | 3 | 1-17/32 | 5/32 | | | | | MEGANT | Single | 5-31/32 | 3 | 9/16 | 13/32 | 1-23/32 | 1-23/32 | 3 | 3 | 1-17/32 | N/A | | | | | 550 x 100 | Double | 5-31/32 | 3 | 9/16 | 13/32 | 1-23/32 | 1-23/32 | 3 | 3 | 1-17/32 | 5/32 | | | | - Connection design must meet all relevant requirements of the General Notes to the Designer section. - Screw installation must follow the patterns presented in the Installation section. - Tabulated values presented are minimum requirements unless noted otherwise. Tabulated values for I, are fixed. Tabulated values for d, are maximum values based on a gap of 0.039 in. [1 mm] between the primary and secondary member. Larger gaps (such as a typical gap of 1/8 in.) will reduce d, accordingly. - Tabulated values that are not dependent on FRR, as well as those for columns with no FRR, are based on minimum end and edge distances. - Minimum dimensions for columns with an FRR are based on minimum wood cover requirements specified in NDS 2024 Chapter 16.5. Column sizes satisfying an FRR assume a fire-resistant joint compliant with FDS 2024 Section 2.5.1.3. and that any void below the connector in the routing has been sealed with a wood plug. The tip of the inclined screws are permitted to penetrate the minimum wood cover. - 6. Values for em are minimum requirements based on minimum end and edge distance, and may need to be adjusted to align with the hanger placement in the secondary - 7. Dimensions for 1-hr and 2-hr FRRs are based on the threaded jaw being installed on the bottom, with the threaded rod and nut being installed from above as shown in the examples above. # MEGANT 150 Series - Geometry Requirements Table 3.11 - MEGANT 150 Geometry | | | Model | | | | | | | | | | |-----------------------|---------------------|---------------------|---------------------|---------------------|--|--|--|--|--|--|--| | Connector
Geometry | MEGANT
310 x 150 | MEGANT
430 x 150 | MEGANT
550 x 150 | MEGANT
730 x 150 | H ₁ | 12-7/32 | 16-15/16 | 21-21/32 | 28-3/4 | | | | | | | | | H ₂ | 9-27/32 | 14-9/16 | 19-9/32 | 26-3/8 | | | | | | | | | T, | 1-31/32 | 1-31/32 | 1-31/32 | 1-31/32 | | | | | | | | | T ₂ | 31/32 | 31/32 | 31/32 | 31/32 | | | | | | | | | w | 5-29/32 | 5-29/32 | 5-29/32 | 5-29/32 | | | | | | | | #### Note: 1. Refer to Appendix D: Product Specifications (Page 109) for additional product specifications. Table 3.12 - MEGANT 150 Geometry Requirements for Secondary Member | MEGANT 150 | | | | | Geom | etry Requ | uirements | s [in.] | | | | |------------|---------------|---------|------------------|-------------------|------------------|-------------------|------------------|-------------------|------------------|----------------|----------------| | MEG | WEGANT 150 | | | No | FRR | 1-hr FRR | | 2-hr FRR | | ۱ ا | | | Model | Configuration | p | e _{top} | e _{side} | e _{bot} | e _{side} | e _{bot} | e _{side} | e _{bot} | d _h | S _d | | MEGANT | Single | 5-25/32 | 1-13/16 | 9/16 | 1-31/32 | 1-23/32 | 3-13/32 | 3 | 5-3/32 | 1-15/16 | N/A | | 310 x 150 | Double | 5-25/32 | 1-13/16 | 9/16 | 1-31/32 | 1-23/32 | 3-13/32 | 3 | 5-3/32 | 1-15/16 | 5/32 | | MEGANT | Single | 5-25/32 | 1-13/16 | 9/16 | 1-31/32 | 1-23/32 | 3-13/32 | 3 | 5-3/32 | 1-15/16 | N/A | | 430 x 150 | Double | 5-25/32 | 1-13/16 | 9/16 | 1-31/32 | 1-23/32 | 3-13/32 | 3 | 5-3/32 | 1-15/16 | 5/32 | | MEGANT | Single | 5-25/32 | 1-13/16 | 9/16 | 1-31/32 | 1-23/32 | 3-13/32 | 3 | 5-3/32 | 1-15/16 | N/A | | 550 x 150 | Double | 5-25/32 | 1-13/16 | 9/16 | 1-31/32 | 1-23/32 | 3-13/32 | 3 | 5-3/32 | 1-15/16 | 5/32 | | MEGANT | Single | 5-25/32 | 1-13/16 | 9/16 | 1-31/32 | 1-23/32 | 3-13/32 | 3 | 5-3/32 | 1-15/16 | N/A | | 730 x 150 | Double | 5-25/32 | 1-13/16 | 9/16 | 1-31/32 | 1-23/32 | 3-13/32 | 3 | 5-3/32 | 1-15/16 | 5/32 | - 1. Connection design must meet all relevant requirements of the General Notes to the Designer section. - 2. Screw installation must follow the patterns presented in the Installation section. - 3. Tabulated values presented are minimum requirements unless noted otherwise. Tabulated values for I_p are fixed. Tabulated values for d_p are maximum values based on a gap of 0.039 in. [1 mm] between the primary and secondary member. Larger gaps (such as a typical gap of 1/8 in.) will reduce d_p accordingly. - 4. Tabulated values that are not dependent on FRR, as well as those for secondary beams with no FRR, are based on minimum end and edge distances. - Minimum dimensions for beams with an FRR are based on minimum wood cover requirements specified in NDS 2024 Chapter 16.5. Beam sizes satisfying an FRR assume a fire-resistant joint compliant with FDS 2024 Section 2.5.1.3. and that any void below the connector in the routing has been sealed with a wood plug. The tip of the inclined screws are permitted to penetrate the minimum wood cover. - Dimensions for 1-hr and 2-hr FRRs are based on the unthreaded jaw being installed on top, with the threaded rod and nut being installed from above as shown in the examples above. ### Primary Member Geometry Requirements - Beam/Girder Unhoused Housed Table 3.13 - MEGANT 150 Geometry Requirements for Primary Member (Beam/Girder) | MEC | ANT 150 | | Geometry Requirements [in.] | | | | | | | | | | | |-----------|---------------|----------------|-------------------------------|------------------|-------------------|------------------|-------------------|------------------|-------------------|----------------|----------------|--|--| | IVIEG | IANT 150 | _ | No FRR 1-hr FRR | | 2-hr FRR | | _ d | | | | | | | | Model | Configuration | l _p | e _{top} | e _{bot} | e _{back} | e _{bot} | e _{back} | e _{bot} | e _{back} | d _h | s _d | | | | MEGANT | Single | 5-25/32 | 3 | 1-13/16 | 13/32 | 2-1/4 | 1-23/32 | 3-15/16 | 3 | 1-15/16 | N/A | | | | 310 x 150 | Double | 5-25/32 | 3 | 1-13/16 | 13/32 | 2-1/4 | 1-23/32 | 3-15/16 | 3 | 1-15/16 | 5/32 | | | | MEGANT | Single | 5-25/32 | 3 | 1-13/16 | 13/32 | 2-1/4 | 1-23/32 | 3-15/16 | 3 | 1-15/16 | N/A | | | | 430 x 150 | Double | 5-25/32 | 3 | 1-13/16 | 13/32 | 2-1/4 | 1-23/32 | 3-15/16 | 3 | 1-15/16 | 5/32 | | | | MEGANT | Single | 5-25/32 | 3 | 1-13/16 | 13/32 | 2-1/4 | 1-23/32 | 3-15/16 | 3 | 1-15/16 | N/A | | | | 550 x 150 | Double | 5-25/32 | 3 | 1-13/16 | 13/32 | 2-1/4 | 1-23/32 | 3-15/16 | 3 | 1-15/16 | 5/32 | | | | MEGANT | Single | 5-25/32 | 3 | 1-13/16 | 13/32 | 2-1/4 | 1-23/32 | 3-15/16 | 3 | 1-15/16 | N/A | | | | 730 x 150 | Double | 5-25/32 | 3 | 1-13/16 | 13/32 | 2-1/4 | 1-23/32 | 3-15/16 | 3 | 1-15/16 | 5/32 | | | #### Notes: - 1. Connection design must meet all relevant requirements of the General Notes to the Designer section. - 2. Screw installation must follow the patterns presented in the Installation section. - Tabulated values presented are minimum requirements unless noted otherwise. Tabulated values for I, are fixed. Tabulated values for d, are maximum values based on a gap of 3. 0.039 in. [1 mm] between the primary and secondary member. Larger gaps (such as a typical gap of 1/8 in.) will reduce
d, accordingly. - 4. Tabulated values that are not dependent on FRR, as well as those for primary beams with no FRR, are based on minimum end and edge distances. - Minimum dimensions for beams with an FRR are based on minimum wood cover requirements specified in NDS 2024 Chapter 16.5. Beam sizes satisfying an FRR assume 5. a fire-resistant joint compliant with FDS 2024 Section 2.5.1.3. and that any void below the connector in the routing has been sealed with a wood plug. The tip of the inclined screws are permitted to penetrate the minimum wood cover. - 6. Values for e, are minimum requirements based on minimum end and edge distance, and may need to be adjusted to align with the hanger placement in the secondary beam. - Dimensions for 1-hr and 2-hr FRRs are based on the threaded jaw being installed on the bottom, with the threaded rod and nut being installed from above as shown in the examples above. ### Primary Member Geometry Requirements - Column Unhoused e_{back} Housed Table 3.14 - MEGANT 150 Geometry Requirements for Primary Member (Column) | MEC | ANT 150 | | Geometry Requirements [in.] | | | | | | | | | |-----------|---------------|------------|-------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------|----------------| | IVIEG | IANT 150 | _ | • | No | FRR | 1-hr | FRR | 2-1 | nr FRR | 4 | | | Model | Configuration | I p | e _{top} | e _{side} | e _{back} | e _{side} | e _{back} | e _{side} | e _{back} | d _h | S _d | | MEGANT | Single | 5-25/32 | 3 | 9/16 | 13/32 | 1-23/32 | 1-23/32 | 3 | 3 | 1-15/16 | N/A | | 310 x 150 | Double | 5-25/32 | 3 | 9/16 | 13/32 | 1-23/32 | 1-23/32 | 3 | 3 | 1-15/16 | 5/32 | | MEGANT | Single | 5-25/32 | 3 | 9/16 | 13/32 | 1-23/32 | 1-23/32 | 3 | 3 | 1-15/16 | N/A | | 430 x 150 | Double | 5-25/32 | 3 | 9/16 | 13/32 | 1-23/32 | 1-23/32 | 3 | 3 | 1-15/16 | 5/32 | | MEGANT | Single | 5-25/32 | 3 | 9/16 | 13/32 | 1-23/32 | 1-23/32 | 3 | 3 | 1-15/16 | N/A | | 550 x 150 | Double | 5-25/32 | 3 | 9/16 | 13/32 | 1-23/32 | 1-23/32 | 3 | 3 | 1-15/16 | 5/32 | | MEGANT | Single | 5-25/32 | 3 | 9/16 | 13/32 | 1-23/32 | 1-23/32 | 3 | 3 | 1-15/16 | N/A | | 730 x 150 | Double | 5-25/32 | 3 | 9/16 | 13/32 | 1-23/32 | 1-23/32 | 3 | 3 | 1-15/16 | 5/32 | #### Notes: - 1. Connection design must meet all relevant requirements of the General Notes to the Designer section. - 2. Screw installation must follow the patterns presented in the Installation section. - 3. Tabulated values presented are minimum requirements unless noted otherwise. Tabulated values for I_p are fixed. Tabulated values for d_p are maximum values based on a gap of 0.039 in. [1 mm] between the primary and secondary member. Larger gaps (such as a typical gap of 1/8 in.) will reduce d_p accordingly. - 4. Tabulated values that are not dependent on FRR, as well as those for columns with no FRR, are based on minimum end and edge distances. - 5. Minimum dimensions for columns with an FRR are based on minimum wood cover requirements specified in NDS 2024 Chapter 16.5. Column sizes satisfying an FRR assume a fire-resistant joint compliant with FDS 2024 Section 2.5.1.3. and that any void below the connector in the routing has been sealed with a wood plug. The tip of the inclined screws are permitted to penetrate the minimum wood cover. - 6. Values for e, are minimum requirements based on minimum end and edge distance, and may need to be adjusted to align with the hanger placement in the secondary beam. - 7. Dimensions for 1-hr and 2-hr FRRs are based on the threaded jaw being installed on the bottom, with the threaded rod and nut being installed from above as shown in the examples above. # **Additional Detailing Considerations** ### Geometry Requirements for Columns with Multiple Beam Hangers Table 3.15 - Minimum Column Sizes for Multiple MEGANT Connectors | | Minimum Column Section Dimensions, b _c x d _c [in. x in.] | | | | | | | | | |-------------------|--|---------------------|---------------------|---|--------------------|---------------------|--|--|--| | Model | Hangers on Op | posing Faces of a | Square Column | Hangers on Opposing Faces of a Rectangular Column | | | | | | | | No FRR | 1-hr FRR | 2-hr FRR | No FRR | 1-hr FRR | 2-hr FRR | | | | | MEGANT 60 Series | 15-17/32 x 15-17/32 | 15-17/32 x 15-17/32 | 15-17/32 x 15-17/32 | 3-15/32 x 15-17/32 | 5-25/32 x 15-17/32 | 8-3/8 x 15-17/32 | | | | | MEGANT 100 Series | 15-17/32 x 15-17/32 | 15-17/32 x 15-17/32 | 15-17/32 x 15-17/32 | 5-1/32 x 15-17/32 | 7-11/32 x 15-17/32 | 9-15/16 x 15-17/32 | | | | | MEGANT 150 Series | 15-15/16 x 15-15/16 | 15-15/16 x 15-15/16 | 15-15/16 x 15-15/16 | 7 x 15-15/16 | 9-5/16 x 15-15/16 | 11-29/32 x 15-15/16 | | | | | | Minimum Column Section Dimensions, bູ x dູ [in. x in.] | | | | | | | | | | |-------------------|--|---------------------|---------------------|--|---------------------|---------------------|--|--|--|--| | Model | Hanger on E | Each Face of a Squ | are Column | Hangers on Each Face of a Rectangular Column | | | | | | | | | No FRR | 1-hr FRR | 2-hr FRR | No FRR | 1-hr FRR | 2-hr FRR | | | | | | MEGANT 60 Series | 15-3/4 x 15-3/4 | 15-3/4 x 15-3/4 | 15-3/4 x 15-3/4 | 15-17/32 x 15-29/32 | 15-17/32 x 15-29/32 | 15-17/32 x 15-29/32 | | | | | | MEGANT 100 Series | 17-5/16 x 17-5/16 | 17-5/16 x 17-5/16 | 17-5/16 x 17-5/16 | 15-17/32 x 17-5/8 | 15-17/32 x 17-5/8 | 15-17/32 x 17-5/8 | | | | | | MEGANT 150 Series | 19-17/32 x 19-17/32 | 19-17/32 x 19-17/32 | 19-17/32 x 19-17/32 | 15-15/16 x 21-13/16 | 15-15/16 x 21-13/16 | 15-15/16 x 21-13/16 | | | | | #### Notes: - 1. Tabulated column section dimensions are minimum values based on a 1/2 in. clearance between screw tips, minimum edge and end distances, and minimum wood cover requirements for FRR. Refer to Geometry Requirements for further details. - 2. It is the responsibility of the EOR to ensure the primary and secondary members have adequate capacity to resist connection forces. - 3. Tabulated column section dimensions assume hangers are centered within each column face ad are housed in the column as shown. ### Hanger Placement Considerations The hanger placement relative to the height of the beam can impact the need for reinforcement. Connectors in the primary member should have the tip of the uppermost fastener in the top 30% of the member depth (0.3d), as shown in the bottom left figure. Connectors in the secondary member should have the tip of the lowermost fastener in the bottom 30% (0.3d), as shown in the bottom right figure. Outside of these zones, the primary and secondary members should be checked for splitting to determine if reinforcement is required. For further information, refer to Appendix C: Survey of Literature on Reinforcement for Tension Perpendicular to Grain (Page 100). | Model | d _t | d _b | |------------------|----------------|----------------| | Wodei | i | n. | | MEGANT 310 x 60 | 2-3/4 | 2-3/4 | | MEGANT 430 x 60 | 2-3/4 | 2-3/4 | | MEGANT 550 x 60 | 2-3/4 | 2-3/4 | | MEGANT 310 x 100 | 1-9/16 | 1-9/16 | | MEGANT 430 x 100 | 1-9/16 | 1-9/16 | | MEGANT 550 x 100 | 1-9/16 | 1-9/16 | | MEGANT 310 x 150 | 1-9/16 | 1-9/16 | | MEGANT 430 x 150 | 1-9/16 | 1-9/16 | | MEGANT 550 x 150 | 1-9/16 | 1-9/16 | | MEGANT 730 x 150 | 1-3/32 | 1-3/32 | ### **Housing Details** ### Housing Possibilities #### Primary Beam Housing - Most common housing for concealed installation. - Concealed from below, the rod(s) can be installed from the top down. #### Secondary Beam Housing - Joist housing from bottom up. - Concealed from below with a wood plug, requiring the rod(s) to be installed from bottom up. #### Secondary Beam Through Housing - Full-depth housing in joist. - Concealed from below with a wood plug, the rod(s) can still be installed from the top. #### Secondary Beam Top Housing - Joist housing from top down. Concealed from below. No wood plug required. - Threaded rod(s) can be installed from top down. ### Housing and Surface Detailing **Parallel Surface:** The members must be parallel at the location of the connection to ensure proper hanger alignment and load transfer. **Gap Size:** The gap size between wood members balances installation ease and fire performance, with larger gaps simplifying installation but reducing fire protection. The gap is typically sized at 1/8 in. [3.2 mm] to address fire protection considerations as outlined in FDS 2024 [refer to Appendix A: Fire Protection (Page 92)]. For proper installation, a minimum gap of 0.039 in. [1 mm] is required to allow the secondary member to slide into place. **Routing Depth:** The routing depth is the depth of the housing, d_h , noted in the Geometry Requirements and Housing Dimensions sections. This depth takes into account the thickness of the connector and the gap between members (assumed as 0.039 in. [1 mm] herein - larger gaps will reduce d_h accordingly). Routing Width: It is recommended to allow a clearance of 0.039 in. [1 mm] on each side of the connector: - MEGANT 60 Series: 2.441 in. [62 mm] - MEGANT 100 Series: 4.016 in. [102 mm] - MEGANT 150 Series: 5.984 in. [152 mm] **Routing Height:** The routing height must be coordinated with the EOR. The height of the connector in the beam section has an impact on connector performance. Refer to the Hanger Placement Considerations section (Page 75) for further information. ## **Housing Dimensions** ### Routing in Primary Member Structural Positioning Screws (Refer to Fastener Layout on Page 80) **Fastener Orientation** Single Configuration **Double Configuration** Table 3.16 - Routing Dimensions for MEGANT Housed in Primary Member | | | | | Routing I | Dimensions, | in. [mm] | | | | |------------------
-------------------------------|----------------------|-----------------------|----------------------|----------------------|-----------------------|-------------------|-------------------|-------------------| | Model | h _p | h _{p,top} | h | $\mathbf{h}_{p,bot}$ | Single | p
Double | \mathbf{w}_{eL} | W _{eR} | d _h | | MEGANT 310 x 60 | 15.079 [383] | 4.724 [119] | 6.693 [170] | 3.622 [92] | 2.441 [62] | 5.118 [130] | 1.220 [31] | 1.220 [31] | 1.535 [39] | | MEGANT 430 x 60 | 19.803 [503] | 4.724 [119] | 11.417 [290] | 3.622 [92] | 2.441 [62] | 5.118 [130] | 1.220 [31] | 1.220 [31] | 1.535 [39] | | MEGANT 550 x 60 | 24.528 [623] | 4.724 [119] | 16.142 [410] | 3.622 [92] | 2.441 [62] | 5.118 [130] | 1.220 [31] | 1.220 [31] | 1.535 [39] | | MEGANT 310 x 100 | 14.921 [379] | 4.370 [121] | 6.693 [170] | 3.819 [97] | 4.016 [102] | 8.268 [210] | 1.220 [31] | 2.795 [71] | 1.535 [39] | | MEGANT 430 x 100 | 19.646 [4 99] | 4.370 [121] | 11.417 [290] | 3.819 [97] | 4.016 [102] | 8.268 [210] | 1.220 [31] | 2.795 [71] | 1.535 [39] | | MEGANT 550 x 100 | 24.370 [619] | 4.370 [121] | 16.142 [410] | 3.819 [97] | 4.016 [102] | 8.268 [210] | 1.220 [31] | 2.795 [71] | 1.535 [39] | | MEGANT 310 x 150 | 14.921 [379] | 4.764 [121] | 6.693 [170] | 3.425 [87] | 5.984 [152] | 12.205 [310] | 2.992 [76] | 2.992 [76] | 1.929 [49] | | MEGANT 430 x 150 | 19.646 [4 99] | 4.764 [121] | 11.417 [290] | 3.425 [87] | 5.984 [152] | 12.205 [310] | 2.992 [76] | 2.992 [76] | 1.929 [49] | | MEGANT 550 x 150 | 24.370 [619] | 4.764 [121] | 16.142 [410] | 3.425 [87] | 5.984 [152] | 12.205 [310] | 2.992 [76] | 2.992 [76] | 1.929 [49] | | MEGANT 730 x 150 | 31.457 [799] | 4.764 [121] | 23.228 [590] | 3.425 [87] | 5.984 [152] | 12.205 [310] | 2.992 [76] | 2.992 [76] | 1.929 [49] | #### Notes: - 1. Tabulated values are general guidelines for routing requirements. The EOR and fabricator are responsible for ensuring final routing dimensions account for all project-specific conditions. - 2. Tabulated values are minimum requirements unless noted otherwise. Tabulated values for h are fixed. Tabulated values for d, are maximum allowable. - 3. Tabulated values for w_a, w_{al}, and w_a we account for 0.039 in. [1 mm] on each side of the hanger. Larger installation tolerances will increase width values accordingly. - 4. Tabulated values are based on a gap of 0.039 in. [1 mm] between the primary and secondary member. Larger gaps (such as a typical gap of 1/8 in.) will reduce d_h accordingly. - 5. Tabulated values for h_p, h_{p,top}, and h_{p,tot} account for a 0.866 in. [22 mm] gap below the clamping jaw and an additional 1.181 in. [30 mm] above the connector for the nut assembly to allow for proper installation. The resulting hidden void should be protected from fire using industry-approved methods. Larger installation tolerances will increase height measurements accordingly. - 6. Tabulated values assume square corners. Manufacturers should adjust the tabulated values based on their specific routing bit sizes. In order to account for the round corner created by routing tools, 1/4 in. overrun is permitted at the inside corners as indicated on the image above. - 7. Refer to the Geometry Requirements tables for each respective beam hanger for additional information. ### Routing in Secondary Member # Fastener Orientation Structural Positioning Screws (Refer to Fastener Layout on Page 80) Table 3.17 - Routing Dimensions for MEGANT Housed in Secondary Member (Beam-End) | | | | | Routing D | Dimensions, | in. [mm] | | | | |------------------|-------------------------------------|----------------------|-----------------------|----------------------|----------------------|---------------------------------|-------------------|------------------------|-------------------| | Model | h _s | $\mathbf{h}_{s,top}$ | h | h _{s,bot} | v
Single | / _s
Double | W _{eL} | W _{eR} | d _h | | MEGANT 310 x 60 | 15.079 <i>[</i> 383 <i>]</i> | 4.724 [120] | 6.693 [170] | 4.724 [120] | 2.441 [62] | 5.118 [130] | 1.220 [31] | 1.220 [31] | 1.535 [39] | | MEGANT 430 x 60 | 19.803 [503] | 4.724 [120] | 11.417 [290] | 4.724 [120] | 2.441 [62] | 5.118 [130] | 1.220 [31] | 1.220 [31] | 1.535 [39] | | MEGANT 550 x 60 | 24.528 [623] | 4.724 [120] | 16.142 [410] | 4.724 [120] | 2.441 [62] | 5.118 [130] | 1.220 [31] | 1.220 [31] | 1.535 [39] | | MEGANT 310 x 100 | 14.921 [379] | 4.764 [121] | 6.693 [170] | 3.346 [85] | 4.016 [102] | 8.268 [210] | 1.220 [31] | 2.795 [71] | 1.535 [39] | | MEGANT 430 x 100 | 19.646 [4 99] | 4.764 [121] | 11.417 [290] | 3.346 [85] | 4.016 [102] | 8.268 [210] | 1.220 [31] | 2.795 [71] | 1.535 [39] | | MEGANT 550 x 100 | 24.370 [619] | 4.764 [121] | 16.142 [410] | 3.346 [85] | 4.016 [102] | 8.268 [210] | 1.220 [31] | 2.795 [71] | 1.535 [39] | | MEGANT 310 x 150 | 14.921 [379] | 4.370 [111] | 6.693 [170] | 3.740 [95] | 5.984 [152] | 12.205 [310] | 2.992 [76] | 2.992 [76] | 1.929 [49] | | MEGANT 430 x 150 | 19.646 [4 99] | 4.370 [111] | 11.417 [290] | 3.740 [95] | 5.984 [152] | 12.205 [310] | 2.992 [76] | 2.992 [76] | 1.929 [49] | | MEGANT 550 x 150 | 24.370 [619] | 4.370 [111] | 16.142 [410] | 3.740 [95] | 5.984 [152] | 12.205 [310] | 2.992 [76] | 2.992 [76] | 1.929 [49] | | MEGANT 730 x 150 | 31.457 [799] | 4.370 [111] | 23.228 [590] | 3.346 [85] | 5.984 [152] | 12.205 [310] | 2.992 [76] | 2.992 [76] | 1.929 [49] | #### Notes: - 1. Tabulated values are general guidelines for routing requirements. The EOR and fabricator are responsible for ensuring final routing dimensions account for all project-specific conditions. - 2. Tabulated values are minimum requirements unless noted otherwise. Tabulated values for h are fixed. Tabulated values for d, are maximum allowable. - 3. Tabulated values for w_e, w_e, and w_e account for 0.039 in. [1 mm] on each side of the hanger. Larger installation tolerances will increase width values accordingly. - 4. Tabulated values are based on a gap of 0.039 in. [1 mm] between the primary and secondary member. Larger gaps (such as a typical gap of 1/8 in.) will reduce d_h accordingly. - 5. Tabulated values for h_s, h_{s.top}, and h_{s.bot} account for a 0.866 in. [22 mm] gap below the clamping jaw and an additional 1.181 in. [30 mm] above the connector for the nut assembly to allow for proper installation. The resulting hidden void should be protected from fire using industry-approved methods. Larger installation tolerances will increase height measurements accordingly. - 6. Tabulated values assume square corners. Manufacturers should adjust the tabulated values based on their specific routing bit sizes in order to account for the round corner created by routing tools, 1/4 in. overrun is permitted at the inside corners as indicated on the image above. - 7. Refer to the Geometry Requirements tables for each respective beam hanger for additional information. # **MEGANT Installation Configurations** ### Possible Installation Configuration for MEGANT #### Alternative Ways to Connect ### Beam Length Tolerances and Sequencing Installation sequencing is important, especially for buildings with multiple bays of post-and-beam framing. It is recommended to install the beams starting from one end of the building and progressing along the column line. The last beam can be produced slightly over length and cut to size on-site to help mitigate any dimensional tolerance challenges. The MEGANT can be installed from above, below, or either side. ### **MEGANT Installation Procedure** ### **Tool Requirements** #### Tools - Use the Correct Bit MTC Solutions fasteners should only be driven using either RW bits or appropriately sized star bits. This ensures good centering and positioning with optimal torque transmission. For the MEGANT, use an RW 40 bit for 5/16 in. CSK screws. #### Tools - Use the Correct Drill Use low-RPM, high-torque drills equipped with a feather (variable speed) trigger to install fasteners. Avoid excessive acceleration and deceleration during the drive-in process. Do not overtorque fasteners. Although impact guns are not expressly prohibited, their use is discouraged - particularly for beam hanger systems - due to an increased risk of overtorquing. Use the appropriate drill chuck size according to the fastener. Table 3.18 - Recommended Torque, Drill Bits, and Power Drill | | Nominal Fastener
Diameter [D] | | Power Drill
Voltage | Allowable
Insertion
Torque | |------|------------------------------------|------|------------------------|----------------------------------| | in. | [mm] | in. | V | lb. ∙ ft. | | 5/16
| [8] | 3/16 | 20 | 12.3 | #### Tools - Predrilling Jig 3/16 in. The Predrilling Jig ensures precise alignment of the MEGANT 45° inclined fasteners. It guides the drill bit to create accurate pilot holes, and ensures proper fastener seating. The hole in the jig accommodates imperial and metric drill bit diameters. For the 5/16 in. inclined fasteners, pilot holes 3/16 in. in diameter and 1 in. long are recommended. ### Fastener Layout #### Fastener Orientation Structural Positioning Screws Horizontal Screws **MEGANT 60 Series** ### **General Installation Steps** #### Estimated Installation Time The estimated installation time for a single person to install a complete MEGANT product is shown in Table 3.19. This process includes the following steps: - 1. Layout (~5-10%) - 2. Positioning (~5-15%) - 3. Pilot Holes (~20-30%) - 4. Screw Installation (~40-50%) - 5. Clamping Jaw Installation (~15-25%) - 6. Optional Measures (not included in the time installation % breakdown) Table 3.19 - MEGANT Estimated Installation Times | Megant
Model | Average Installation
Time [min.] | |-----------------|---------------------------------------| | 310 x 60 | 17 | | 430 x 60 | 21 | | 550 x 60 | 24 | | 310 x 100 | 23 | | 430 x 100 | 27 | | 550 x 100 | 32 | | Megant
Model | Average Installation
Time [min.] | |-----------------|---------------------------------------| | 310 x 150 | 31 | | 430 x 150 | 37 | | 550 x 150 | 44 | | 730 x 150 | 53 | The estimated time can be improved upon with efficient fabrication and site practices such as: - Drilling pilot holes for the structural positioning screws at the time of fabrication - 2. Utilizing templates to drill pilot holes for structural screws - . Optimizing beam positioning to reduce work fatigue ### Step-by-Step Installation Guidelines #### 1.1 Layout - Reference Points Begin by laying out the locations of the beam hanger on the primary and secondary members using a pencil and square. Position the MEGANT's plates for installation, ensuring the proper orientation is set on both the primary and secondary members. Each MEGANT plate is marked with an "A" on one end and a "B" on the opposite end. - The "A" shall be oriented towards the top of the primary member - The "B" shall be oriented towards the top of the secondary member Note: When the inclined screws are installed, they will incline towards the end of the plate marked with an "A". It is critical to lay the pieces out in the correct orientation on both members, as the capacity of the hanger is dependent on the withdrawal of the fasteners in this orientation. #### 1.2 Layout - Split Lamination Considerations It is recommended that vertical joints in split lamination glulam beams be tight at the time of manufacturing. Gaps between adjacent plies may occur due to wood shrinkage. Gaps up to 1/8 in. are acceptable for typical MEGANT installation. If split lamination gaps greater than 1/8 in. exist in the beamend an alternative screw pattern will be required #### 2.1 # Positioning - Structural Positioning Screw Installation Positioning screws ensure accurate placement of the MEGANT connector. To facilitate accuracy and installation time, it is recommended to predrill the structural positioning screw locations during member fabrication. Note that structural screws cannot be reused if the connector requires adjustment. Install one structural positioning screw into the hole highlighted at the top of the plate. Check to ensure alignment is maintained, and then install the second structural positioning screw into the hole highlighted at the bottom of the plate. #### 3.1 #### Pilot Holes - Recommendations Pilot holes are optional; however, they allow for faster screw thread engagement, help reduce splitting risks, ensure a proper penetration path which reduces screw wandering, and reduce insertion torque. For the structural fasteners used with the MEGANT series, pilot holes 3/16 in. in diameter and 1 in. in length are recommended. The use of MTC Predrilling Jig for the inclined screws is recommended to ensure proper hole placement. #### <u>4</u> 1 #### Screw Installation - Align Drill Bit Axis Align the drill bit axis parallel to the fastener axis during installation to allow proper torque transmission and to avoid stripping. #### 4.2 #### Screw Installation - Decrease RPM To avoid overtorquing the screw, decrease the rotation speed about 1/2 in. away from the final installed position. This is crucial to prevent wood crushing due to overtorquing, which can impact beam hanger tolerances, potentially impeding overall connection assembly. This is especially important when using an impact drill. #### 4.3 Screw Installation - Drill Pressure Do not apply excessive pressure on the drill while driving the fastener to prevent fastener buckling or deviation during installation. Only apply the required force or use the recommended holder case to eliminate cam-out effects. #### 4.4 Screw Installation - One-Step Process To avoid increased torque peaks caused by stopping and restarting the drive-in process, install the screw in one run until the head is lightly seated against the side member. If necessary, a torque wrench may be used to complete installation immediately after the screw has been driven. #### 4.5 Screw Installation - Remaining Shear Screws Install 5/16" x 6-1/4" VG CSK screws in the remaining horizontal holes, beginning adjacent to the structural positioning screws. Note that some of the horizontal screws are angled inward by 15°. Horizontal Screws for **Primary Member** Horizontal Screws for Secondary Member #### 4.6 Screw Installation - Inclined Screws Install 5/16" x 6-1/4" VG CSK screws in all inclined holes after all perpendicular screws have been installed. Primary Member 45° Screws for Secondary Member #### 5.1 Clamping Jaws - General Information Clamping jaws should be installed on each end of the connector plates with the countersunk holes facing away from the beam. Each MEGANT product kit comes with: - One clamping jaw with threaded holes - One clamping jaw with smooth/unthreaded holes The threaded rods, without tightening, may be used to ensure both jaws are correctly positioned. The unthreaded clamping jaw must remain accessible for tightening the connector plates together. **Threaded Clamping Jaw** **Unthreaded Clamping Jaw** #### **Drop-down Installation** **Primary Member Housing** **Secondary Member Through Housing** **Secondary Member Bottom Housing** - Unthreaded Clamping Jaw - 1 Primary Member - 2 Secondary Member #### Notes: 1. With through housing, the unthreaded jaw can be at either the top or bottom depending on access #### **Bottom-up Installation** Secondary Member Top Housing #### 5.2 Clamping Jaws - Threaded Jaw Installation Install the threaded clamping jaw on the housed member at the closed end with the grooved side seated firmly against the tongue of the connector plate. Insert the threaded rod(s) to help position the jaw on the connector plate. Drill 3/16 in. x 1 in. pilot holes at the jaw screw locations, and then install VG CSK screws to secure the clamping jaw. Remove the threaded rod(s) and retain them for Step 5.3. Secondary Member Bottom Housing Example Clamping Jaw Screws, Secondary Member #### 5.3 Clamping Jaws - Unthreaded Jaw Installation Install the unthreaded clamping jaw on the unhoused member at the same plate label (i.e., both jaws will be installed on either "A" end or "B" end). Insert the threaded rod(s) to help position the jaw on the connector plate. Drill 3/16 in. x 1 in. pilot holes at the jaw screw locations, and then install VG CSK screws to secure the clamping jaw. Remove the threaded rod(s) and retain them for Step 5.4. Clamping Jaw Screws, Primary Member ### 5.4 Clamping Jaws - Connecting the MEGANT Plates Slide the two connector plates together. While the beam is unloaded, insert the rods through the unthreaded clamping jaw and until they are flush with the surface of the jaw. At this point, the threaded rod will be 1-3/16 in. proud of the unthreaded jaw. Each threaded rod is equipped with a hexagonal recess at one end. The end without this recess must be inserted into the threaded clamping jaw, allowing the accessible end to be turned using a hex key. Install the washer and nut on each rod. Tighten the nut to the recommended installation torque of 29.5 lb.·ft. ### 6.1 Optional Measures - Wood Plug Where connectors are housed in the secondary beam, it is recommended to void in the routed void below the connector for aesthetics and fire protection. A wood plug may be used, and installation instructions shall be provided by the Engineer of Record. ### **Accessories** ### **Bits** #### Patented Bits for ASSY Fasteners The ASSY RW is a hardened bit designed for quick and efficient installation of ASSY fasteners. Suitable bits for each fastener are listed in its specification table. ### Bit Holder Socket ### Bit Holder Socket for RW 50 Bits The Bit Holder Socket is designed to hold RW 50 Bits on large double handle drills. The socket can be used with the magnetic bit holder case to facilitate the installation of larger-diameter screws which requires higher torque. Suitable for Large Drills RW 50 Compatible Optimum Torque Transfer ### **Predrilling Jig** ### Eases Predrilling for Inclined Fasteners Our Predrilling Jig is a versatile installation accessory designed to support more consistent and precise fastener installation with less effort and in less time than conventional predrilling processes. Available in three sizes to accommodate 5/16 in., 3/8 in., and 1/2 in. VG CSK fasteners, it is compatible with the inclined fasteners of the MEGANT and RICON S VS XL as well as custom steel-to-wood connections (with 45° Wedge Washers, 90° Cup Washers, or appropriately machined holes in steel plates of various thicknesses). The inner diameters, d, accommodate standard imperial and metric drill bit diameters recommended for predrilling (3/16 in., 1/4 in., and 17/64 in. respectively). The
outer diameters, D, and shoulder geometries mirror the head of the fastener for rapid positioning and alignment, while a tight tolerance at the tip ensures a snug fit with minimal play in the receiving hole. Compatible Compatible with Multiple Angles #### Recommended Diameters of Predrilled and Pilot Holes | Nominal Fastener
Diameter [D] | Predrilled Hole
Diameter | Pilot Hole
Diameter | Steel Plate
Hole Diameter | |------------------------------------|-----------------------------|------------------------|------------------------------| | | in. | | | | 1/4 | 5/32 | ≤ 5/32 | 9/32 | | 5/16 | 3/16 | ≤ 3/16 | 3/8 | | 3/8 | 1/4 | ≤ 1/4 | 7/16 | | 1/2 | 17/64 | ≤ 17/64 | 17/32 | | 9/16 | 5/16 | ≤ 5/16 | N/A | #### Notes: - 1. The predrilling length should be equivalent to the length of the fastener. - Pilot holes are intended to facilitate the installation of the fasteners by reducing splitting risks, ensuring a proper penetration path and faster thread engagement with the wood fiber. A minimum pilot hole depth is 1 in. is recommended to obtain the aforementioned benefits. - 3. Predrilled holes that exceed the diameters listed above may reduce the capacity of the screws. - 4. These recommendations are applicable to ASSY fasteners supplied by MTC Solutions. - 5. Connection design must meet all the relevant requirements outlined in the Notes to the Designer section. ### Clip Lock Brace System for Uplift Clip Lock brace systems are additional components available for the RICON S VS beam hanger system. The Clip Lock is a special thin steel plate designed to fit into and lock the RICON S VS beam hanger plates together, yielding a resistance to uplift forces. The Clip Lock is installed with the hanger on the primary beam or column, and as the secondary beam is lowered into place, providing resistance to uplift loads. These components are installed using the same screws used to fasten the beam hanger plates into the wood member. A new screw pattern applies to the primary member to allow the Clip Lock to be installed properly, which results in a reduced download capacity. Uplift Force Resistance Reduced Downward Force # **Appendix** | APPENDIX A: FIRE PROTECTION | 92 | |---|------------| | Building Types and Associated Fire Protection | | | Balancing Connector Fire Protection and Member Sizing | | | Proposed Member Sizing Design Flow | | | Fire Protection for Connections | | | Standard Detailing Guidelines for MTC Products | 96 | | APPENDIX B: UPLIFT RESISTANCE DESIGN | 98 | | Example of Toe Screw Installation | 98 | | Design Information for Toe Screw Connections | 99 | | APPENDIX C: SURVEY OF LITERATURE ON REINFORCEMENT FOR TENSION PERF | PENDICULAR | | TO GRAIN | 100 | | Strength of Members for Brittle Failure in Tension Perpendicular to Grain | 100 | | Best Practices for Designing Reinforcement | 104 | | Detailing Reinforcing Screws | 107 | | Summary of Recommendations | 108 | | References | | | ADDENDIV D. DDODUCT ODECIFICATIONS | 400 | ### Appendix A: Fire Protection ### **Building Types and Associated Fire Protection** The International Building Code (IBC) 2024 contains three types of tall mass timber building, IV-A, IV-B, and IV-C. Key defining features of the building types include the allowable height, building area, and fire-resistance rating (FRR) requirements. As buildings increase in size and height, FRR requirements become more stringent. A Type IV-A building must meet a 3-hr FRR (IBC 2024 Table 601), and at least two thirds of that FRR must be achieved using noncombustible protection (IBC 2024 Section 602.4.1.2.1) such as Type X gypsum wallboard. Types IV-B and IV-C require the primary structural frame to meet a 2-hr FRR (IBC 2024 Table 601). Type IV-B structures have some requirements for noncombustible protection (IBC 2024 Section 602.4.2.2), whereas Type IV-C structures allow mass timber elements to be fully exposed (IBC 2024 Section 602.4.3.2). In short, the current building code requirements may require up to 2-hr FRR members and connections for exposed mass timber structural elements. Figure A.1 - IBC 2024 Types of Mass Timber Buildings IBC 2024 Section 722.1 allows designers to calculate FRR using NDS 2024 Chapter 16, which identifies wood as a combustible material and a poor conductor of heat. Wood develops an insulating char layer during a fire, and as such, can protect noncombustible elements such as beam hanger systems. The American Wood Council (AWC) Fire Design Standard (FDS) 2024 offers provisions for the design of fire-resistance-rated timber elements and their structural connections for durations of up to two hours. ### Balancing Connector Fire Protection and Member Sizing One challenge in fire protection design is ensuring connectors have sufficient wood cover in addition to the required fire resistance of the timber members. Designers commonly select member sizes before selecting the connectors, which can lead to conflicts when accommodating beam hangers. Both NDS 2024 and FDS 2024 require a minimum wood cover around the perimeter of a connector for fire resistance. While this is crucial for achieving the desired FRR, it can limit the available space for placing a beam hanger. Prioritizing the selection of a beam hanger system with the appropriate capacity before sizing the timber members ensures that the structural capacity of the member, the fire resistance of the member, and the fire protection of the connector are all achieved. ### Proposed Member Sizing Design Flow Figure A.2 - Proposed Member Sizing Design Flow ### Fire Protection for Connections IBC 2024 includes many options to demonstrate FRR, two of which are commonly used in mass timber connections: the calculation method outlined in NDS 2024 Chapter 16 and a testing method. The testing method has two options for compliance: a temperature pathway and a loading pathway. Table A.1 - Methods to Demonstrate Fire Protection of Connections | Calculation Method | Testing Method | | | |--|--|--|--| | Calculation Method | Temperature Pathway | Loading Pathway | | | Calculation in accordance with NDS 2024 Additional details found in FDS 2024 | Temperature-based acceptance criteria Approvals based on UL 2079 or ASTM E1966 Joint Testing Criteria Temperature curve following the trend specified in ASTM E119 | Full-scale, fully loaded testing Must follow prescribed test configuration details (e.g., height of column above the connector that may prevent plug shear failure) Acceptance criteria includes maintaining load for the entirety of the test Temperature curve following the trend specified in ASTM E119 | | #### Calculations for Connections without Approved Fire-Resistant Joint Systems NDS 2024 Chapter 16 refers to FDS 2024 for the design of wood cover around metallic parts of a connection. FDS 2024 Section 3.10 requires all components of a connection to be protected. This includes metal connectors, fasteners that are part of the structural connection, and portions of the members that are part of the structural connection. The depth of char penetration into the wood members, a_{char} , is calculated using FDS 2024 Eqs. 3.2-1 and 3.2-2. It is allowed to assume a nominal char rate, β_n , of 1.5 in./hr for sawn lumber, glulam, LVL, and CLT products. The char penetration at intersecting members is dependent on if there is an approved fire-resistant joint in accordance with FDS 2024 Section 2.5.1.3. FDS 2024 Section 3.2.3 stipulates that for connections without an approved fire-resistant joint, char contraction must be considered at the ends of exposed wood members, with a penetration depth of $2 \cdot a_{char}$ (Figure A.3a). This approach requires the gap between the two members to be less than or equal to 1/8 in., and that airflow through the gap must be prevented. If the gap between members is greater than 1/8 in., or if the gap is less than or equal to 1/8 in. and airflow cannot be prevented, then both members must be treated as fully exposed (Figure A.3b), which is considered incompatible with pre-engineered beam hanger connection designs. Figure A.3a - Char Contraction for Members ≤ 1/8 in. Apart Figure A.3b - Char Contraction for Exposed Members NDS 2024 Table 16.3.1 gives values for a_{char} for various FRR. The minimum cover shown in Table A.2 below assumes no fire-resistant joint is present at the intersection of the wood members. Table A.2 - Char Depth and Required Wood Cover for Intersecting Members Without No Fire-Resistant Joint | FRR | Char Depth,
a _{char} | Wood Cover Depth, | | |-----|----------------------------------|-------------------|--| | hr | in. | | | | 1 | 1.5 | 3.0 | | | 2 | 2.6 | 5.2 | | #### Calculations for Connections with Approved Fire-Resistant Joint Systems FDS 2024 Section 3.2.3.1 allows members with an approved fire-resistant joint system (in accordance with Section 2.5.1.3) to use a char penetration between wood members equal to a_{char} as opposed to $2 \cdot a_{char}$ required when considering char contraction. Common materials used in fire-resistant joints include mineral wool insulation, intumescent tape, and fire sealants. Figure A.4 - Char Penetration with an Approved Fire-Resistant Joint Maximum Gap Size:
The maximum allowable gap depends on the specific fire protection method used. **Adjustment Factor for Wood Cover:** FDS 2024 Section 3.6.1.1 states that when a single layer of wood cover is used for thermal separation, its calculated protection time must be reduced by 15%. Combining FDS 2024 Eqs. 3.2-2 and 3.4-2 with the provisions from FDS 3.2.1.1 gives the depth of the wood cover, d_n , in inches. $$d_p = 1.14 a_{char}$$ (eq. A.1) Using this approach, the required wood cover for protected joints is shown in Table A.3 below. Table A.3 - Char Depth and Required Wood Cover for Intersecting Members With an Approved Fire-Resistant Joint | FRR | Char Depth,
a _{char} | Wood Cover Depth, | |-----|----------------------------------|-------------------| | hr | in. | | | 1 | 1.5 | 1.7 | | 2 | 2.6 | 3 | Corner Rounding Effect: The intersecting char fronts for members exposed on more than one side causes increased charring at the corners. The radius of the corner rounding, r, can be taken as a_{char} . If the metallic parts are installed too low in the beam section, they may be exposed to excessive heat early due to corner rounding char as shown in Figure A.4. This leads to two possible scenarios: - 1. The beam will need to be wider to prevent the rounded corners affecting the metallic parts. - 2. The metallic parts will be pushed higher in the beam section. Figure A.5 - Corner Rounding Effects ### Standard Detailing Guidelines for MTC Products Unless indicated otherwise, the tabulated FRR beam sizes presented in the design tables in this guide are calculated assuming the use of an approved fire-resistant joint. The most common solutions for FRR compliance involve the use of fire caulking and intumescent tape. These products should be applied in accordance with the manufacturer's specifications. Figure A.6 - Fire-Resistant Joint **Void Below Connectors:** Some connector models, such as the RICON S VS XL and the MEGANT series, require a void below them to facilitate proper installation. Unless otherwise indicated, the void must be filled with appropriate fire-stopping materials such as mineral wool insulation, intumescent tape, fire sealants, or a wood plug. **Wood Plug:** In some installation configurations, the housing extends the full depth of the secondary member, leaving a void at the bottom. Thus, a wood plug is necessary to ensure the required FRR during the service life of the connection. FDS 2024 Section 3.4.1.4 stipulates that fasteners used to attach wood protection do not need to be protected; however, the fasteners must be long enough to penetrate the protected member by at least 1 in. Additional Fire Design Considerations for MEGANT Connectors: The threaded rod assembly must be taken into account when determining the placement of the connector in the beam section and evaluating its FRR. The threaded rods extend 1-3/16 in. above the edge of the clamping jaw in all MEGANT connectors. ### Appendix B: Uplift Resistance Design Additional hardware is required to resist uplift forces with beam hanger systems. This can be achieved by installing fully threaded toe screws after the connectors are in place. The orientation of each screw relative to the joint assures that the screw primarily resists uplift through tension. Fully threaded screws are compatible with all beam hanger systems. For RICON S VS hangers, uplift resistance can also be achieved using a Clip Lock system. More details on this option are presented in the RICON S VS chapter. To ensure proper performance, installation of the beam hanger system and toe screw is essential. Minimum spacing requirements must be satisfied to prevent interference between fasteners and ensure the integrity and performance of the connection. ### **Example of Toe Screw Installation** ### **Design Information for Toe Screw Connections** Table B.1. - Geometry Requirements | Toe Screw Diameter | Minimum Screw
Length | Minimum Insertion
Point End Distance | Minimum Distance to
Edge of Beam | Minimum Distance to
Edge of Hanger | |--------------------|-------------------------|---|-------------------------------------|---------------------------------------| | D | L | Α | В | С | | in. | | | | | | _ | 20D | 8D | 3D | 3D | | 5/16 | 6-1/4 | 2-1/2 | 15/16 | 15/16 | | 3/8 | 7-7/8 | 3 | 1-1/8 | 1-1/8 | #### Notes: - 1. All connection design must meet all the relevant requirements of the Notes to the Designer section. - 2. Geometry requirements are in accordance with ICC-ESR-3178 (2024). - 3. In wood species sensitive to splitting, minimum geometry requirements may be required to be increased. - 4. If the insertion point end distance is greater than the distance from the top of the beam to the top of the hanger minus four times the diameter of the screw (i.e., A > H 4D), then each inclined screw should be located at least a distance of C from the hanger. Table B.2. - Allowable Adjusted Uplift Design Values for Single Toe Screws | | Fasteners | | Insertion Point End
Distance [in.] | Allowable | • Uplift [lb.] | Cost | |--------|-----------------|------|---|-----------|------------------|--------------------------| | Т | уре | Qty. | A | G = 0.42 | G = 0.49 | | | | 5/16" x 6-1/4" | | 2-1/2 | 1,130 | 1,320 | | | | 5/16" x 7-7/8" | | 3 | 1,530 | 1,790 | | | | 5/16" x 8-5/8" | | 3-1/4 | 1,680 | 1,970 | | | VG CYL | 5/16" x 9-1/2" | 2 | 3-1/2 | 1,840 | 2,150 | _ | | VGCTL | 5/16" x 10-1/4" | | 4 | 1,950 | 2,280 | Increasing Fastener Cost | | | 5/16" x 11" | | 4 | 2,140 | 2,510 | sing | | | 5/16" x 11-7/8" | | 4-1/2 | 2,350 | N/A | Fast | | | 5/16" x 13" | | 4-3/4 | 2,510 | N/A | ener | | | 3/8" x 11-7/8" | | 4-1/2 | 2,630 | 3,100 | Cost | | | 3/8" x 12-5/8" | | 4-3/4 | 2,800 | 3,310 | | | | 3/8" x 13-3/8" | | 5 | 2,980 | 3,520 | | | VG CYL | 3/8" x 14-1/4" | 2 | 5-1/4 | 3,150 | 3,610 | | | | 3/8" x 15" | | 5-1/2 | 3,320 | N/A | | | | 3/8" x 15-3/4" | | 5-3/4 | 3,490 | N/A | | | | 3/8" x 17" | | 6-1/4 | 3,610 | N/A | | #### Notes: - 1. Tabulated allowable uplift loads are based on a short-term load duration, C_p, of 1.6. - 2. Tabulated allowable uplift loads are for two fasteners installed at 45° in a beam-to-column configuration as shown on the previous page. - 3. Tabulated allowable uplifts loads assume the fasteners are not installed in a void between lamelas of split-laminated glulam members. - 4. Tabulated allowable uplift loads are based on both glulam members (i.e., column and beam) having the same specific gravity. Where specific gravities between the primary and secondary members differ, the lower value shall be used. - 5. Tabulated allowable uplift loads are only valid for Allowable Stress Design (ASD). - 6. Highlighted allowable uplift cells indicate a value where the tensile strength of the fastener governs the design. No further increase in strength can be achieved with longer screws. - 7. Tabulated values are based on at least two fasteners per connection. # Appendix C: Survey of Literature on Reinforcement for Tension Perpendicular to Grain Connecting beams by side-loading or end-support in mass timber structures requires careful placement of fasteners and the consideration of perpendicular-to-grain tensile stresses. If required, reinforcing screws can be used to prevent wood splitting by providing a load path for tension perpendicular to grain. This appendix provides a **literature review** of best practices, focusing on advanced techniques like self-tapping screws, based on the latest research and applications. It is crucial that all engineering work be completed by a licensed Professional Engineer of Record (EOR) to ensure safety and compliance with the appropriate codes and standards. ### Strength of Members for Brittle Failure in Tension Perpendicular to Grain This appendix focuses exclusively on perpendicular-to-grain brittle failure modes in wood connections, emphasizing the importance of careful design. EORs should be particularly attentive to tension-induced splitting at points of load application and beam-end fracture at points of support. NDS 2024 offers limited-and sometimes overly conservative guidelines for these failure modes. Through this literature review, we aim to provide EORs with comprehensive background knowledge, enabling them to make informed, consistent decisions that align with best practices across various design standards. Splitting Resistance of Wood Members in Connections Loaded Perpendicular to Grain Perpendicular-to-grain tension-induced splitting can occur if loads are applied without engaging enough of the member's depth, such as in a connection placed low on a member's side (see Figure C.1). In these scenarios, reinforcement may be required based on fastener height and load magnitude. Splitting is a concern when a connection applies load to a member, unless the connection includes fasteners that engage at least 70% of the beam's depth from the loaded edge, as indicated by CSA O86:24 and Eurocode 5 EN 1995-1-1:2004. Figure C.1 - Splitting at Low Connection on Primary Member's Side NDS 2024 does not provide criteria to evaluate the splitting strength of members for connections that are side-loaded perpendicular to grain. For this condition, the EOR should refer to NDS 2024 Section 1.1.1.5, which states that they may use design procedures not explicitly given in the Standard, provided that these methods are based on a recognized theory that gives satisfactory results. Therefore, the theory must provide a reference design value that aligns with NDS 2024 principles, including a 10-year load duration, dry service conditions, temperatures below 100° F, and an appropriate factor of safety. Some international standards provide methods for estimating splitting resistance. For example, CSA 086:24 Clause 12.12.10.8 presents an equation for the factored splitting resistance, QS_{rT} , of an untreated wood member in dry service conditions when
fasteners engage less than 70% of the member's depth. $$QS_{rT}=\phi_w\cdot K_D\cdot C_{5\%}\cdot l_s\cdot \sqrt{ rac{d_e}{1- rac{d_e}{d}}}$$ (eq. C.1) Where: *QS_rT* factored splitting resistance of an untreated wood member in a connection loaded perpendicular to grain in dry service conditions in N Φ_{m} resistance factor for brittle failures, taken as 0.7 $K_{\scriptscriptstyle D}$ load duration factor from CSA O86:24, set at unity for standard-duration transient loads such as snow and occupancy $C_{5\%}$ constant for the fifth percentile splitting capacity of softwood lumber in CSA O86:24, taken as 14 N/mm^{1.5} l_s bearing length of the screws for partially penetrated members in mm, denoted as t_i in CSA O86:24 $d_{_{\it e}}$ effective shear depth in mm d depth of the member in mm To obtain reference design values aligned with NDS principles, one possible approach is to adjust the equation presented above using a suitable load duration, a factor of safety aligned with NDS 2024, and conversion factors to accommodate imperial units. The equation below is provided as a potential method for estimating NDS 2024 reference design values for splitting in softwood lumber connections loaded perpendicular to grain when fasteners engage less than 70% of the member's depth. $$F_{pt} = \frac{C_{5\%} \cdot C_{lb} \cdot C_{D,CSA} \cdot l_s \cdot C_{in}}{C_D \cdot C_{des}} \cdot \sqrt{\frac{d_e \cdot C_{in}}{1 - \frac{d_e}{d}}}$$ (eq. C.2) Where: F_{pt} estimated reference design value for splitting strength of a wood member in a of a connection loaded perpendicular to grain in lb. $C_{5\%}$ constant for fifth percentile splitting capacity of softwood lumber in CSA O86:24, taken as 14 N/mm^{1.5} C_{ib} conversion factor for force units, taken as 0.2248 to convert N to Ib. $C_{D,CSA}$ conversion factor for load duration, taken as 1.25 to convert from CSA O86:24 standard-term duration to NDS 2024 10-min. load duration bearing length of the screws for partially penetrated members in in. C_{in} conversion factor for length units, taken as 25.4 to convert mm to in. C_D load duration factor from NDS 2024, taken as 1.6 for short-term loading and used here to convert from NDS 2024 10-min. load duration to reference 10-yr load duration \mathcal{C}_{des} conversion factor for design method, taken as 2.0 to convert from CSA Limit States Design to NDS Allowable Stress Design d_e effective shear depth, taken as the distance from the loaded edge of the member to the furthest fastener row, in in. d depth of the member in in. It is the EOR's responsibility to satisfy themselves that any formulas they use for design are appropriate for their specific situation. If the EOR deems the equation given above is appropriate for use, its simplified version can be applied as follows: $$F_{pt}=157\cdot l_s\cdot\sqrt{ rac{d_e}{1- rac{d_e}{d}}}$$ (eq. C.3) The reference design value obtained using the above equation shall be multiplied by the applicable adjustment factors in NDS 2024 to determine the adjusted design value for splitting resistance for a connection loaded perpendicular to grain, F'_{pt} . For ASD, the applicable adjustment factors are C_D (NDS 2024 Table 2.3.2), C_M (NDS 2024 Table 11.3.4). In addition, the member shall be of sufficient size to carry the applied load without exceeding the adjusted design value; otherwise, the member shall be reinforced. #### Beam-End Fracture Strength of Members at Points of Support Beam-end fracture in members can be induced by excessive cross-grain tension. Connections that provide support to beams may require reinforcement to prevent beam-end fracture if they do not support the bottom of the members, such as illustrated in the following examples. Figure C.2 - Concealed Bearing Plate Does Not Support Bottom of Member Figure C.3 - Lowest Dowel in Knife Plate Connection Does Not Support Bottom of Member Figure C.4 - Lowest Inclined Fastener in Beam Hanger Does Not Support Bottom of Member Figure C.5 - Effective Threads of Reinforcing Screw Does Not Extend to Bottom of Member Because beam-end splitting depends on support conditions and load levels, the EOR must ensure that end splitting does not occur. Research indicates that beams are safe from end splitting when supported by MTC hangers at their allowable design loads when positioned according to Table C.1. Table C.1 - Relative Connector Positioning at Beam-End Locations | Product | Minimum Distance from Lowest Fastener to
Loaded Edge in Secondary Member | |------------|---| | GIGANT | 0.7d | | RICON S VS | 0.8d | | MEGANT | 0.7d | For cases not covered by Table C.1, NDS 2024 Eq. 3.4-6 (Eq. C.4 below) provides a method for calculating the design shear strength, V'_r, near the end of a beam where part of its depth is unsupported by the connection (see Figure C.6). The adjusted design shear strength is reduced to reflect both the loss of load transfer capability due to increased tensile stress perpendicular to grain, although research has shown that this calculation method is very conservative. This equation applies to any connection within five times the member depth from the beam-end. To prevent this reduced shear strength, either engage more of the beam's depth with the connection, or reinforce the member at the connection location. $$V_r^{'}=\left(rac{2}{3}\cdot F_v^{'}\cdot b\cdot d_e ight)\left(rac{d_e}{d} ight)^2$$ (eq. C.4) (NDS 2024 eq. 3.4-6) Where: F_v^{\prime} adjusted shear strength of the member in psi According to NDS 2024 Eq. 3.4-7 (Eq. C.5 below), when a connection provides support to a member and is located at least 5d from its end, the adjusted design shear, V', is permitted to be calculated as: Figure C.6 - Splitting of Beam Supported Near its End ### Best Practices for Designing Reinforcement Reinforcement for Preventing Splitting at Points of Load Application Existing literature indicates that when a secondary member connects too low on the side of a primary member and engages less than 70% of its depth, it is necessary to calculate the adjusted design value for splitting perpendicular to grain, F'_{pt}. Should the applied load, P, exceed this value, reinforcing the member with self-tapping screws often proves more economical than increasing the member's size. This approach is especially critical for connections where prioritizing placement in the primary member can significantly minimize the forces associated with beam-end splitting perpendicular to the grain in the secondary member Figure C.7 - Beam Splitting with Hanger Installed at Mid-Span Figure C.7 illustrates a split beam due to a load applied by a hanger installed at mid-span, where the top fasteners are located at a distance of d_e from the bottom edge. In this scenario, the lower beam section, with a depth of d_e , supports the entire load, P. If reinforcing screws connect the upper and lower beam sections at mid-span, they will distribute a portion of the load, η P, to the upper section and its remaining portion, $(1 - \eta)$ P, to the lower section. The formula below ensures deflection compatibility between the upper and lower portions of the split beam and is applicable to various loading configurations, not just at mid-span. $$P_R = \eta \cdot P \tag{eq. C.6}$$ Where: $$\eta=1-3\left(rac{d_e}{d} ight)^2+2\left(rac{d_e}{d} ight)^3$$ (eq. C.7) With the design load for the reinforcing screws, P_R , now able to be calculated, all information needed to design the reinforcing screws is available. Typical practice would be to provide a fully threaded self-tapping screw on each side of the hanger. Fasteners should be spaced 1.5D from the nearest beam hanger and 3D from the front edge of the primary beam, where D is the nominal diameter of the fastener. In such a case, each screw would be designed to support half of the calculated design load (i.e., $P_R/2$) given by the formula above. Fully threaded reinforcing screws supplied by MTC should be designed following the requirements of ICC-ESR 3178 (2024). As outlined above, the location of the top row of fasteners in the hanger defines the location where splitting would occur in the member. The split can be considered to create an upper member and a lower member at its location. The upper member at this location equates to the "side" member noted in ICC-ESR 3178 (2024) that defines its thickness, $t_{s,w}$, as follows: $$t_{s,w} = d - d_e \tag{eq. C.8}$$ Assuming the head of the screw is set flush with the top surface of the beam, the effective thread lengths above, $L_{eff.m}$, and below, $L_{eff.m}$, the location of the split can then be calculated as: $$L_{eff,s} = t_{s,w} - L_{un}$$ (eq. C.9) $$L_{eff,m} = L - t_{s,w} - L_{tip} \tag{eq. C.10} \label{eq:effm}$$ Where: L_{un} length of the unthreaded portion of the screw, measured from screw head to the start of the threads length of the screw tip, equivalent to the nominal fastener diameter, D In addition, in scenarios where the hanger will be subjected to uplift loads greater than the adjusted design value for splitting perpendicular to grain for this condition, to prevent splitting at the screw tip, embed it at least 0.7d below the top of the member, as shown in Figure C.8. Figure C.8 - Force Distribution and Reinforcement Placement in Side of Member Reinforcement for Preventing Beam-End Fracture at Points of Support NDS 2024 does not offer specific guidance for designing reinforcement for members susceptible to beam-end fracture. For beams determined to have insufficient shear capacity at end supports, the EOR can reference Timber Engineering Principles for Design by H.J. Blaß and C. Sandhaas which offers the following equation for determining the load transferred by reinforcing screws, $P_{\rm R}$, across the fracture plane at the end of a beam: $$P_R=1.3\cdot \left[3\left(1-\frac{d_e}{d}\right)^2-2\left(1-\frac{d_e}{d}\right)^3\right]\cdot
V \tag{eq. C.11}$$ Where: V shear force in the member being transferred to the support in lb. Figure C.9 - Reinforcement Placement in Beam-End Only one row of reinforcing screws should be used to ensure even load distribution among all screws. Existing literature suggests that for typical gravity applications in beam-end connections, these fasteners should be installed from the bottom and penetrate as close to the top of the beam as possible. When designing reinforcement, it is best practice to position the row of reinforcing screws as close to the end of the beam as possible. The spacing, as well as end and edge distance, requirements for MTC fully threaded self-tapping screws can be found in the MTC Solutions Structural Screw Catalog. ### **Detailing Reinforcing Screws** C.1 Placement of Reinforcing Screws for Equal Load Sharing To ensure equal load sharing among reinforcing screws: - In the primary member, reinforcing screws should be oriented in a single row on each side of the hanger, with all screws positioned the same distance, s, from the centerline of the hanger. - In the secondary member, reinforcing screws should be oriented in a single row, with all screws positioned the same distance, a, from the end of the secondary member. ### C.2 Avoiding Screw Collisions To avoid screw collisions, reinforcing screws should be installed beside the beam hanger rather than between its fasteners. If two beam hangers are placed side-by-side to support the end of a member, a reinforcing screw should be installed on each side of the dual-hanger assembly and ideally between the two hangers. Figure C.11 - Reinforcing Screw Placement for Avoiding Screw Collisions ### C.3 Installing Reinforcing Screws Near Edges Screws installed near an edge of a member may be angled slightly inward (by approximately 5°) to mitigate the risk of deviating during installation and protruding from the side of the member Figure C.12 - Reinforcing Screw Placement Near an Edge # C.4 Considering Tool Requirements Needed to Accommodate Installation Typically, reinforcing screws should be installed before the member is placed in its final configuration. When this is not possible, the EOR must consider the space required for installation tools, the length of the reinforcing screws, and the installation sequence of adjacent components. Figure C.13 - Accommodation of Tools During Installation ### **Summary of Recommendations** | Recommendation | Reasoning | | |---|--|--| | Only install a single row of reinforcing screws | Forces are not evenly distributed across multiple rows of fasteners | | | Prioritize placement of the secondary member to avoid reinforcement, helping isolate reinforcement only to the primary member | This results in more efficient design and more space for reinforcement in the primary member | | | Ensure screw spacing meets manufacturer's guidelines | This helps prevent screw collisions and wood splitting; | | | Reinforcing screws near beam edges may be angled slightly inward (by approximately 5°) if geometry can be accommodated | This minimizes the risk of screw deviation from the side of the beam during installation | | | Pilot holes should be drilled as close to the full length of the screws as possible. | This facilitates a proper penetration path for screws and reduces the risk of screw collisions | | #### References - Branco, J, Dietsch, P, and Tannert, T (eds.). (2021). Reinforcement of Timber Elements in Existing Structures. State-of-the-Art Report of the RILEM TC 245-RTE, Springer, ISBN 978-3-030-67794-7. - Harte, A, and Dietsch, P (eds). (2015). Reinforcement of Timber Structures: A State-of-the-Art Report. Shaker, ISBN-10: 3844037519. - European Committee for Standardization (CEN). (2023). DRAFT prEN 1995-1-1 Eurocode 5 Design of timber structures Part 1-1: General rules and rules for buildings, Brussels, Belgium. - Green, M, Karsh, JE. (2012). The Case for Tall Wood Buildings, Vancouver, Canada. Wood Enterprise Coalition. - Blaß, HJ, Bejtka, I. (2004). Reinforcements perpendicular to the grain using self-tapping screws, Lahti, Finland. Proceedings of the World Conference of Timber Engineering WCTE. - Blaß, HJ, Sandhaas, C. (2017). Timber Engineering Principles for Design, KIT Scientific Publishing, ISBN 978-3-7315-0673-7. - Deutsches Institut f ür Bautechnik (DIBt). (2018). ETA-11/0190 Wurth self-tapping screws, Berlin, Germany. - ETA-Danmark A/S. (2022). ETA-10/0189 Knapp clip connectors and hold downs type Gigant, Ricon, and Walco, Nordhavn, Denmark. - Austrian Institute of Construction Engineering (OiB). (2019). ETA-15/0667 Knapp Clip Connector type Megant, Vienna, Austria. - National Research Council of Canada (NRC). (2020). Evaluation Report CCMC 13677-R SWG ASSY® VG Plus and SWG ASSY® 3.0 Self-Tapping Wood Screws, Ottawa, Canada, ISSN 1206-1220. - American Wood Council (AWC). (2024). National Design Specification for Wood Construction with Commentary 2024 Edition, Leesburg, USA, ISBN 978-1-940383-6. - Canadian Standards Association (CSA). (2024). CSA O86:24 Engineering design in wood, Toronto, Canada, ISBN 978-1-4883-5082-5. # Appendix D: Product Specifications This appendix provides more precise dimensions for the different beam hanger components referenced in this design guide. Detailed 2D and 3D geometry files are available for download on the respective product pages. # **GIGANT GIGANT 120 x 40** 4.646" 4.409" 1.024" 1.024" 1.575" **GIGANT 150 x 40** 1.260" 5.669 5.906 0.236" 1.260" 1.575 **GIGANT 180 x 40** 0.4150" TYP UNO 1.260" 7.165" 0.236" 1.260" 1.024" 1.575" #### RICON S VS **RICON S VS 200 x 60** #### **RICON S VS 200 x 80** #### **RICON S VS 290 x 80** #### **RICON S VS XL 390 x 80** #### **MEGANT 60 SERIES** #### **MEGANT 100 SERIES** | Model | h ₁ | h ₂ | |-----------------|----------------|----------------| | Model | iı | າ. | | MEGANT 310 x 60 | 6.693 | 9.843 | | MEGANT 430 x 60 | 11.417 | 14.567 | | MEGANT 550 x 60 | 16.142 | 19.291 | | Model | h ₁ | h ₂ | |------------------|----------------|----------------| | Wodel | iı | n. | | MEGANT 310 x 100 | 6.693 | 9.843 | | MEGANT 430 x 100 | 11.417 | 14.567 | | MEGANT 550 x 100 | 16.142 | 19.291 | #### **MEGANT 150 SERIES** | Model | h ₁ | h ₂ | |------------------|----------------|----------------| | Wodel | in. | | | MEGANT 310 x 150 | 6.693 | 9.843 | | MEGANT 430 x 150 | 11.417 | 14.567 | | MEGANT 550 x 150 | 16.142 | 19.291 | | MEGANT 730 x 150 | 23.228 | 26.378 | info@mtcsolutions.com 1.866.899.4090 mtcsolutions.com