

Connectors Design Guide

info@mtcsolutions.com

1.866.899.4090

Disclaimer

The information in this document is provided on an "as is" basis and for general information purposes only. While MTC Solutions aims to keep the information provided in this document complete, accurate, and in line with state-of-the-art design methods, MTC Solutions, its affiliates, employees, agents, or licensors do not make any representations or warranties of any kind, including, but not limited to, express or implied warranties of fitness for a particular purpose or regarding the content or information in this document, to the full extent permitted by applicable law.

The information in this document does not constitute engineering or other professional advice, and any reliance users place on such information is therefore strictly at their own risk. Images and drawings provided within this document are for reference only and may not apply to all possible conditions. MTC Solutions shall not be liable for any loss or damage of any kind, including indirect, direct, incidental, punitive, or consequential loss or damage arising out of, or in connection with, the information, content, materials referenced, or the use of any of the systems described in this document. Users may derive other applications which are beyond MTC Solutions' control. The inclusion of the systems or the implied use of this document for other applications is beyond the scope of MTC Solutions' responsibility.

Published on February 1st, 2023, Copyright © 2023 by MTC Solutions. All rights reserved. This document or any portion thereof may not be reproduced or used in any manner whatsoever without the expressed written permission of the publisher.

TABLE OF CONTENTS

GENERAL NOTES TO THE DESIGNER	9
MTBL - MASS TIMBER BRACKET LIGHT	
Applications	
Associated Hardware	
Factored Resistance Values in CLT	
Geometry Requirements	
Connector Detailing	
Testing	14
BSP-S - SOLID BASE SHEAR PLATE	
Associated Hardware	17
Applications	17
Factored Resistance Values in CLT Shear Wall	
Geometry Requirements	
Connector Detailing	
MTS15 - MASS TIMBER STRAP	20
Associated Hardware	20
Applications	20
Factored Resistance Values in CLT	21
Geometry Requirements	21
MTS-I - MASS TIMBER STRAPS INCLINE	22
Associated Hardware	22
Applications	22
Factored Resistance Values in CLT	23
Geometry Requirements	24
Connector Detailing	24
Installation Consideration	25

At MTC Solutions, our core focus is to supply structural hardware for modern mass timber applications in commercial, industrial, and residential projects. We are proud to partner with leading industry experts, providing solutions and tools to design code-compliant buildings that are pushing the boundaries of the North American construction industry.

Our in-house team of mass timber specialists support professionals in designing connections that are tailored to the specific needs of each project, resulting in truly innovative and cost-efficient solutions. We are recognized as experts, moving the industry forward with tested and proven solutions.

Expertise

We provide the knowledge and tools to help our customers build cutting-edge and codecompliant mass timber projects while pushing the boundaries of the North American construction industry.

Commitment

We are dedicated to making your project a success, from design and installation support to delivering high quality products with speed and accuracy.

North American Tailored Products

We partner with leading research facilities across North America to ensure our products are tested and customized to fit the unique needs of the market, from seismic considerations to solutions for large post and beam structures in various climates.

Find Your Connection Solution

MTC Solutions provide the right tools to design code-compliant buildings, educating the mass timber industry on connection solutions.

Structural Screw Catalog

Structural Screw Connection Design Guide

Structural Fasteners

MTC Beam Hangers Design Guide - **Beam Hangers** Design Guide

Connector Design Guide

Connectors

Rigging Design Guide

Rigging Devices

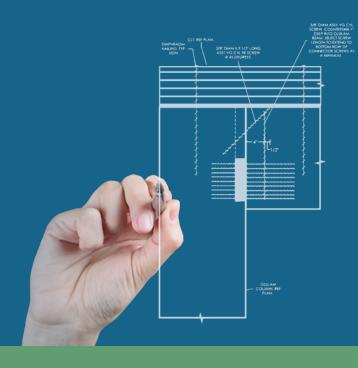
-

Fall Arrest Anchor Design Guide

YOUR MASS TIMBER HARDWARE SUPPLIER

Rely on our distribution team to deliver your North American projects with speed and accuracy.

LEADING WITH INNOVATION & RESEARCH


We are leading the mass timber industry with cutting edge connection solutions and partnering with renowned research facilities.

WE MAKE YOU THE EXPERT

Learn about the right solutions for your projects and Mass Timber connections with our technical resources & support team!

CONNECTIONS DESIGN SUPPORT

Reach out to the technical team for design support, from early design stages to ongoing iterative changes. We help find the most efficient connection solutions.

MANUFACTURERS' HELP DESK

Use our comprehensive & practical resources to find the most cost-effective solutions for your structural elements.

TESTED & PROVEN SOLUTIONS

Count on MTC Solutions' 10+ years of expertise, providing tested & proven ICC approved solutions, support, and resources.

Clayton Community Center

Surrey, BC

M

General Notes To The Designer

- All suggestions and details shown are to be treated as general and cannot be assumed to be valid for all construction requirements and specific site conditions.
- 2. Listed factored resistances are obtained based on tested values and analyzed using CSA O86-19 and ASTM E2126 standards.
- 3. Listed factored resistance values are in the linearelastic range of the connection.
- Designers must ensure that all possible stress limits in the wood members, such as the shear capacity, the rolling shear capacity of the Cross Laminated Timber (CLT) or other material properties, are not exceeded and continuous load path is assured.
- 5. Listed factored resistance values presented must be adjusted in accordance with all applicable adjustment factors as detailed in the CSA 086-19, Clause 12, unless otherwise indicated.
- 6. Connectors in combination with carbon steel fasteners are to be used in dry service conditions and temperature below 50°C such that K_{sF} =1.0 and K_{τ} =1.0.
- 7. For standard term loading, the load duration factor is $K_p=1$. For short-term loading, the load duration factor is $K_p=1.15$, per CSA O86-19 Clause 5.3.2.1.
- 8. Listed factored resistance values apply to different timber species according to their respective mean relative densities (G) as per CSA O86-19.

- 9. Cyclic test data have been analyzed using ASTM E2126 Equivalent Energy Elastic Plastic (EEEP) method and is used to report the ductility value for the connector. Based on North American standards, an energy dissipative connection must be moderately ductile, with ductility defined as the ratio of the ultimate displacement and the yield displacement during cyclic loading per ASTM E2126. These standards define moderately ductile connections as connections with a ductility ratio of 3.0 or higher. The ductility ratio for the tested connectors is listed in the appropriate tables.
- 10. Connections must respect the geometry requirements as specified in the connection Geometry Requirement sections of this guide.
- 11. Installation of the connector fasteners into voids, splits and gaps is to be avoided.
- 12. A design professional must be contacted immediately, and appropriate measures must be taken if splitting of the wood or wood-based material is observed during installation or prior to installation of the fasteners. A design professional must also be notified in instances of fastener damage or breakage.

MTBL - Mass Timber Bracket Light

The Mass Timber Brackets Light are engineered from thin 1.5mm galvanized steel with a reinforced perimeter and are easily installed with ASSY self-tapping screws. The MTBLs can withstand loads similar to thicker 3mm steel brackets, providing a cost-effective solution.

Fast Installation

Performance Based Design

Ductile Connection

MTBL 90

BIAN AMERIC

Associated Hardware

Fasteners and Installation Tools

ASSY Ecofast 4.5 x 50 mm

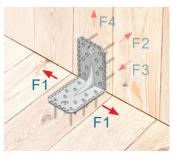
Countersunk Head

MTBL 105

AW 20 Bit

Applications

Factored Resistance Values in CLT


Table 1, F1 - Factored Lateral Resistance in CLT Using MTBL

	Config	juration		Fasteners		Factored R	esistance [kN]	Estimated Slip	
Γ						F1 - Latera	Modulus	Ductility	
		Angle Bracket	Relative Density	Туре	Type Quantity	Standard Loading	Short Term Loading	[kN / mm]	Ratio
		Bracket Benaity	Density			KD = 1.0	KD = 1.15	[]	
		MTBL 90	0.42	Ecofast	20	6.7	7.7	2.1	7.5
		MTBL 105	(SPF)	4.5 x 50	26	6.8	7.9	3.1	10.0

Table 2, F1 - Estimated Ultimate Lateral Resistance in CLT Using MTBL

Configu	uration	Faste	eners	Ultimate Resistance [kN]			
Anglo	Relative			F1 - Lateral Resistance			
Angle Bracket	Density	Туре	Quantity	Estimated	Estimated		
Diacket	Density			5 th Percentile	95 th Percentile		
MTBL 90	0.42	Ecofast	20	10.1	17.5		
MTBL 105	(SPF)	4.5 x 50	26	10.4	16.2		

Load Direction

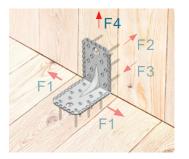
Notes:

1. See detailed notes under table 4

Table 3, F4 - Factored Uplift Resistance in CLT Using MTBL

Config	guration		Faste	eners	Factored R	esistance [kN]	Estimated Slip	
F 4	Angle Deletive			Quantity	F4 - Uplift	Modulus	Ductility	
	Angle Relative Bracket Density	Туре	Standard Loading		Short Term Loading	[kN / mm]	Ratio	
		Density			KD = 1.0	KD = 1.15		
	MTBL 90	0.42	Ecofast	20	6.3	7.2	5.4	15.8
	MTBL 105	MTBL 105 (SPF) 4.5 x 50	4.5 x 50	26	6.0	6.9	4.3	14.6

Table 4, F4 - Estimated Ultimate Uplift Resistance in CLT Using MTBL


Configu	uration	Faste	eners	Ultimate Resistance [kN]			
Amala	Deletive			F4 - Uplift Resistance			
Angle Bracket	Relative Density	Туре	Quantity	Estimated	Estimated		
Dracket				5 th Percentile	95 th Percentile		
MTBL 90	0.42	Ecofast	20	10.5	13.3		
MTBL 105	(SPF)	4.5 x 50	26	10.2	12.8		

Notes:

1. Listed factored resistance values are only valid for Limit State Design in Canada.

- 2. Listed factored resistance values are only valid for listed ASSY screws.
- All connection design must meet all relevant requirements of General Notes to the Designer, page 7.
- The MTBL were tested in monotonic and reverse cyclic loading configurations. Listed factored resistance values are calculated using test data and test-based calculation methods.
- 5. The estimated slip modulus was derived from cyclic loading, in accordance with the EEEP method as detailed in ASTM E2126.

Load Direction

- The ultimate load values at 5th and 95th percentile was derived based on at least 12 brackets tested in each loading orientation, in accordance with the EN 14358 standard and CSA 086-19, Clause 11.
- For the MTBL 105, the reference design values presented in this guide assume side B is always perpendicular to the load direction "F4" and parallel to the load directions "F2" and "F3". The load direction "F1" is independent of install direction. See page 11.
- Connector placement must respect the requirements presented in the MTBL Geometry Requirements Section, page 11.
- 9. The maximum installation torque for the 4.5mm diameter ASSY Ecofast screws is 3.4 N·m.

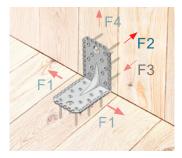

	Configuration				eners	Factored R	Estimated Slip		
		America	Deletive			F2 - Withdra	Modulus		
F2		Angle	Relative Type		Quantity	Standard Loading	Short Term Loading	[kN / mm]	
		Bracket	Density			KD = 1.0	KD = 1.15	[]	
		MTBL 90	0.42	Ecofast	20	5.8	6.7	3.7	
		MTBL 105	(SPF)	4.5 x 50	26	7.9	9.1	5.2	

Table 5, F2 - Factored Withdrawal Resistance in CLT Using MTBL

Table 6, F2 - Estimated Ultimate Withdrawal Resistance in CLT Using MTBL

Configu	uration	Faste	eners	Ultimate Resistance [kN]			
Angle	Relative			F2 - Withdrawal Resistance			
Bracket	Density	Туре	Quantity	Estimated	Estimated		
Diacket	Density			5th Percentile	95 th Percentile		
MTBL 90	0.42	Ecofast	20	10.0	12.4		
MTBL 105	(SPF)	4.5 x 50	26	12.4	19.2		

Load Direction

Notes:

1. See detailed notes under table 8.

Table 7, F3 - Factored Compression Resistance in CLT Using MTBL

	Confiç	guration		Fast	eners	Factored R	Estimated Slip	
						F3 - Compres		
F3		Angle	Relative Typ	Туре	ype Quantity	Standard Loading	Short Term Loading	[kN / mm]
-		Bracket	Density			KD = 1.0	KD = 1.15	
		MTBL 90	0.42	Ecofast	20	7.9	9.1	1.8
		MTBL 105	(SPF)	4.5 x 50	26	8.2	9.4	3.2

Table 8, F3 - Estimated Ultimate Compression Resistance in CLT Using MTBL

Configu	uration	Faste	eners	Ultimate Resistance [kN]			
America	Deletive			F3 - Compression Resistance			
Angle Bracket	Relative Density	Туре	Quantity	Estimated	Estimated		
Bracket				5 th Percentile	95th Percentile		
MTBL 90	0.42	Ecofast	20	13.3	17.7		
MTBL 105	(SPF)	4.5 x 50	26	14.5	16.1		

Notes:

1. Listed factored resistance values are only valid for Limit State Design in Canada.

- 2. Listed factored resistance values are only valid for listed ASSY screws.
- All connection design must meet all relevant requirements of General Notes to the Designer, page 7.
- The MTBL were tested in monotonic and reverse cyclic loading configurations. Listed factored resistance values are calculated using test data and test-based calculation methods.
- The estimated slip modulus was derived from cyclic loading, in accordance with the EEEP method as detailed in ASTM E2126.

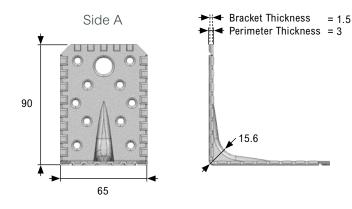
Load Direction

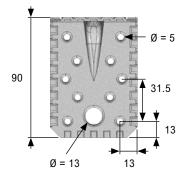
- The ultimate load values at 5th and 95th percentile was derived based on at least 12 brackets tested in each loading orientation, in accordance with the EN 14358 standard and CSA 086-19, Clause 11.
- For the MTBL 105, the reference design values presented in this guide assume side B is always perpendicular to the load direction "F4" and parallel to the load directions "F2" and "F3". The load direction "F1" is independent of install direction. See page 11.
- 8. Connector placement must respect the requirements presented in the MTBL Geometry Requirements Section, page 11.
- 9. The maximum installation torque for the 4.5mm diameter ASSY Ecofast screws is 3.4 N·m.

Geometry Requirements

Front View

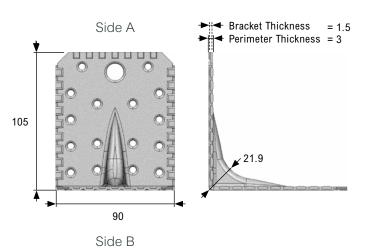
Notes:

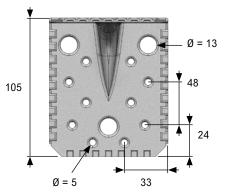

- 1. All dimensions are in mm.
- 2. Distances "e" are minimum edge distances.


MTBL 105 Front View

Connector Detailing

MTBL 90

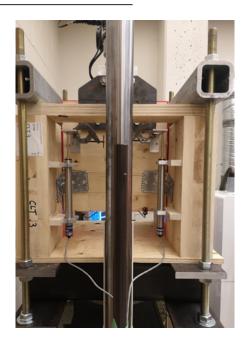

Side B



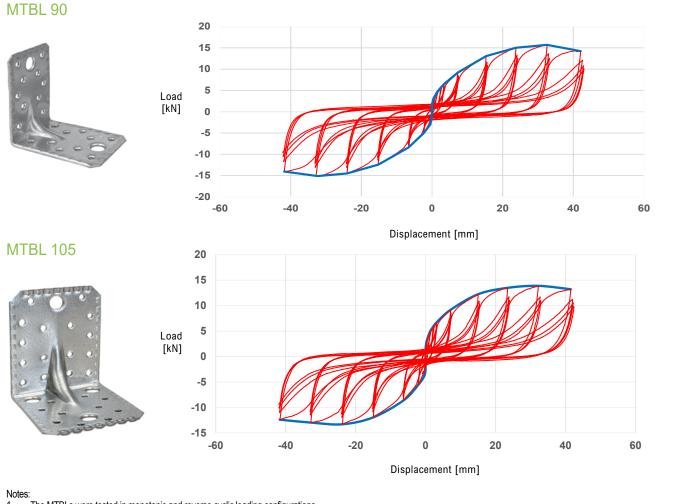
Notes:

- 1. All dimensions are in mm.
- 2. All 5 mm holes are to be filled.
- For the MTBL 105, the reference design values presented in this guide assume side B always perpendicular to the load direction "F4" and parallel to the load directions "F2" and "F3". The load direction "F1" is independent of install direction.

MTBL 105



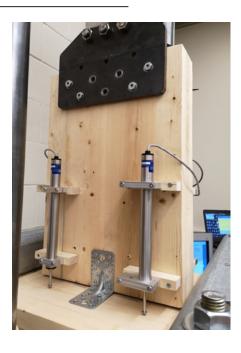
Testing

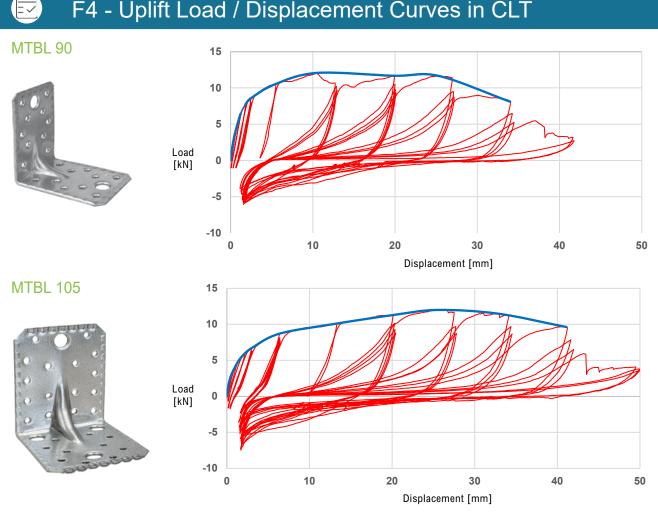

Data Analysis

The load-displacement graphs presented in this section show hysteresis loops and envelope curves and have been selected to show an average result from a set of tests. The envelope curves were obtained from the hysteresis loop created by the reverse cyclic tests.

For the reverse cyclic test, ASTM E2126 was followed to analyze the results. Analysis has shown that the MTBL angle brackets have an average ductility ratio of 3 or more in all loading directions following the Equivalent Energy Elastic-Plastic (EEEP) method in both monotonic and cyclic loading conditions.

F1 - Lateral Load / Displacement Curves in CLT


1. The MTBLs were tested in monotonic and reverse cyclic loading configurations.


2. Graphs shown represent an average result recorded in the tests.

Data Analysis

The witnessed failure modes varied depending on loading direction, however, ductile steel failure and ductile screw yielding were the prevalent failure modes observed. In load directions F1 Lateral and F3 Compression, steel yielding was recorded. In load directions F2 Withdrawal and F4 Uplift, both screw withdrawal and steel yielding was observed.

Throughout the testing, it was observed that the MTBL 90 and the MTBL 105 performed similarly in a variety of selected test setups. This result is due to similarities in the design of each MTBL with respect to hole patterns and the amount and location of fasteners on each leg.

F4 - Uplift Load / Displacement Curves in CLT

Note

- The MTBLs were tested in monotonic and reverse cyclic loading configurations. 1.
- 2. Graphs shown represent an average result recorded in the tests.

First Tech Federal Credit Union

180

5100

Hillsboro, Oregon

BSP-S - Solid Base Shear Plate

The BSP-S Solid Base Shear Plate connector is designed for high strength shear connections in seismic applications. The BSP-S is easily installed on CLT shear walls using high-capacity code approved ASSY self-tapping screws. The failure mechanism of the BSP-S connector is designed to be the screw yielding in failure mode (f).

BSP-S

Fast Installation

High Capacity Connector

Seismic Applications

LESTED 12

ZORIA AMERIC

Associated Hardware

Fasteners and Installation Tools

Hexegonal Head

17 mm Magnetic Socket Specified Magnetic Socket Bit for Installation

**Hardware package does not include the concrete anchors

Applications

Factored Resistance Values in CLT Shear Wall

Table 9, F1 - Factored Lateral Resistance in CLT Using BSP-S

Configuration	Fastene	rs	Factored Resistance [kN]			
	Deletive			F1 - Lateral Resistance		
F1 F1	Relative Density	Туре	Quantity	Standard Loading	Short Term Loading	
• • • •				[K _D = 1.0]	[K _D = 1.15]	
	0.42 (SPF)	Kombi 12 x 140	4	37.22	42.80	

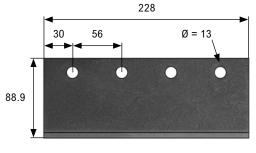
Notes:

- 1. Listed factored resistance values are only valid for Limit State Design in Canada.
- 2. Listed factored resistance values are only valid for listed ASSY screws.
- All connection design must meet all relevant requirements of General Notes to the Designer, page 7.
- Listed factored resistance values are calculated using test data and test-based calculation methods.
- Requirements Section.6. The maximum installation torque for the 12mm diameter ASSY Kombi screw is 47.3 N·m.

Connector placement must respect the requirements presented in the BSP-S Geometry

- The failure mode observed for the steel to wood portion of the BSP-S, is yielding of the self-tapping screws in mode (f).
- 8. No uplift forces shall be assigned to the base shear connections.
- 9. The BSP-S system must be fastened using anchor rods that are designed to transfer the full factored resistance values or more as shown in Table 9.

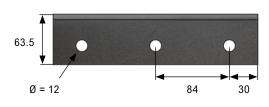
Geometry Requirements



5.

Front View

Notes: 1. Distances "e" are minimum end distances.


Connector Detailing

Front View

Notes:

- 1. All dimensions shown in this page are in mm.
- All 13 mm holes are to be filled with ASSY Kombi 12 x 140.
- All 12 mm holes are to be filled with anchor rods (refer to note 9 under Table 9).

Top View

Ritchie Market

Edmonton, Alberta

MTS15 - Mass Timber Strap

The Mass Timber Strap 15 is a tested high-capacity connector designed for use in various mass timber elements. The MTS15 is an ideal solution for tension applications using strong code approved ASSY selftapping screws for a fast and easy installation.

BRA AMERIC

Fast Installation

Performance Based Design

Associated Hardware

Fasteners and Installation Tools

ASSY Kombi LT 12 x 160 mm

Hexagonal Head

28

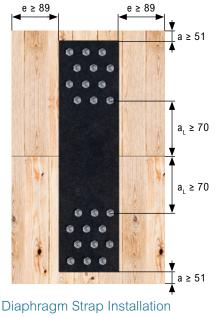
32

**All dimensions are in mm.

17 mm Magnetic Socket Specified Magnetic Socket Bit for Installation

Applications

Factored Resistance Values in CLT

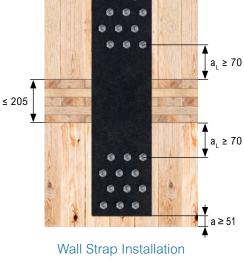

Table 10, Tested Factored Lateral Resistance in CLT Using MTS15

		CLT Panel & Plate Configur	ation		Fastene	ers	Factored Resistance [kN]		Estimated Slip	
			Relative Density	Panel Thickness [mm]	Туре	Quantity	Standard Loading K _D = 1.0	Short Term Loading K _D = 1.15		
5 PLY +	Nr		SPF (0.42)	≥ 175	Kombi LT 12 x 160	24	100	115	25.8	

Notes:

- 1. Listed factored resistance values are only valid for Limit State Design in the Canada.
- 2. Listed factored resistance values are only valid for listed ASSY screws.
- All connection design must meet all relevant requirements of General Notes to the Designer, page 7.
- Listed factored resistance values are calculated using test data and test-based calculation methods.

Geometry Requirements

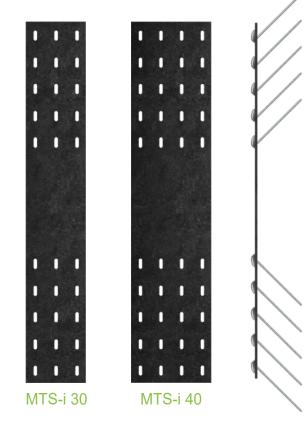

- Connector placement must respect the requirements presented in the MTS 15 Geometry Requirements section.
- 6. Shall pre-drilling be required, a 1/4" diameter drill bit may be used for pre-drilling.

e ≥ 89

7. The maximum installation torque for the 12mm diameter ASSY Kombi screws is 47.3 N·m.

e ≥ 8

a ≥ 51


Front View

Notes:

- 1. All dimensions shown in this page are in mm.
- 2. All geometry requirements are in accordance with the testing performed.
- 3. Distances "a" are minimum end distances.
- Distances "a_L" are minimum loaded end distances.
- 5. Distances "e" are minimum edge distances.

MTS-i - Mass Timber Straps Incline

The MTS-i Mass Timber Strap series offers two solutions: the MTS-i 30 and the MTS-i 40 series. The MTS-i 30 and MTS-i 40 are designed to be a capacity protected connection in mass timber structures and are easy to install with code approved ASSY self-tapping screws and 45-degree washers. By using high strength inclined screws, the MTS-i offers higher stiffness and capacity for various tension applications, making it a one-of-a-kind off the shelf connecting solution.

Fasteners and Installation Tools

High Capacity Connector

Mass Timber Panels

ASSY VG CSK 8 x 220 mm

Countersunk Head

Fast Installation

45° Washer

Applications

Factored Resistance Values in CLT

Table 11, Factored Lateral Resistance in CLT Using MTS-i 30

	CLT Panel & Plate Configur	ration		Fastene	rs	Factored Resistance [kN]	
		Panel Thickness [mm]	Relative Density	Туре	Quantity	Standard Loading K _p = 1.0	Short Term Loading K _D = 1.15
+ ≻		> 140	SPF (0.42)	VG CSK	20	121	139
5 Pl	Nr - IIII	≥ 140	D.Fir (0.49)	8 x 220	30	129	148

Table 12, Estimated Ultimate Lateral Resistance in CLT Using MTS-i 30

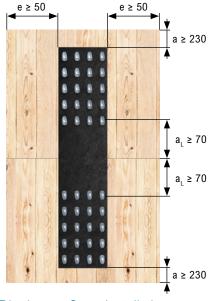
Configuration		Fasteners			Ultimate Resistance [kN]		
	Relative				F1 - Lateral Resistance		
Tension Strap	Density		Туре	Quantity	Estimated	Estimated	
	Density				5th Percentile	95 th Percentile	
MTS-i 30	SPF			30	184	251	
	(0.42)		VG CSK				
10113-130	D.Fir		8 x 220		215	286	
	(0.49)				215	200	

Notes:

1. See detailed notes under Table 14.

Table 13, Factored Lateral Resistance in CLT Using MTS-i 40

	CLT Panel & Plate Configu	Fasteners		Factored Resistance [kN]			
		Panel Thickness	Relative	Туре	Quantity	Standard Loading	Short Term Loading
		[mm]		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Quantity	K _D = 1.0	K _D = 1.15
+			SPF			161	185
	Nr	≥ 140	(0.42)	VG CSK	40		
			D.Fir	8 x 220		171	197
			(0.49)				


Table 14, Estimated Ultimate Lateral Resistance in CLT Using MTS-i 40

Configuration		Fasteners			Ultimate Resistance [kN]		
	Relative	Туре			F1 - Lateral Resistance		
Tension Strap	Density			Quantity	Estimated	Estimated	
	Density				5th Percentile	95 th Percentile	
MTS-i 30	SPF		VG CSK	30	245	335	
	(0.42)						
	D.Fir		8 x 220		258	345	
	(0.49)						

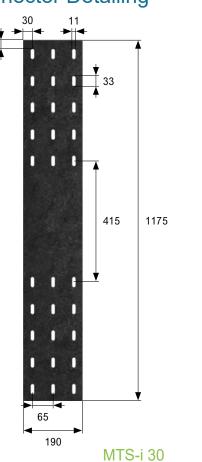
Notes:

- 1. Listed factored resistance values are only valid for Limit State Design in the Canada.
- 2. Listed factored resistance values are only valid for listed ASSY screws.
- All connection design must meet all relevant requirements of General Notes to the Designer, page 7.
- Fasteners and 45-degree washers must be placed according to the Installation Considerations section "B" on page 21.
- 5. Screw installation shall start with the inner most screw of the tension strap as shown in Installation Consideration section "C" on page 21.
- Connector placement must respect the requirements presented in the MTS-i Geometry Requirements section on page 20.
- 7. Shall pre-drilling be required, a 3/16" diameter drill bit may be used for pre-drilling.
- 8. The maximum installation torque for the 8mm diameter VG CSK screws is 16.7 $\ensuremath{\text{N}$\cdot\text{m}$}.$

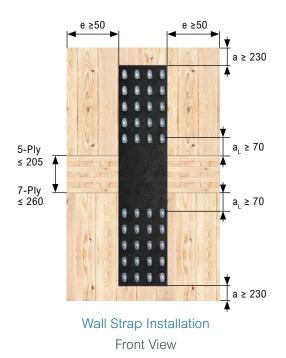
Geometry Requirements

Diaphragm Strap Installation

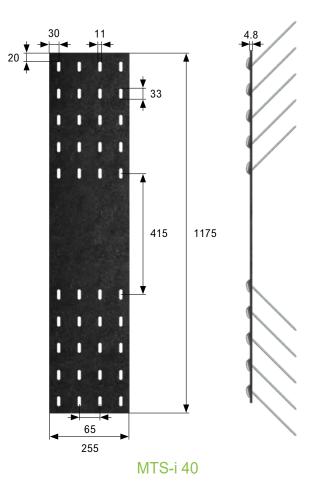
Top View

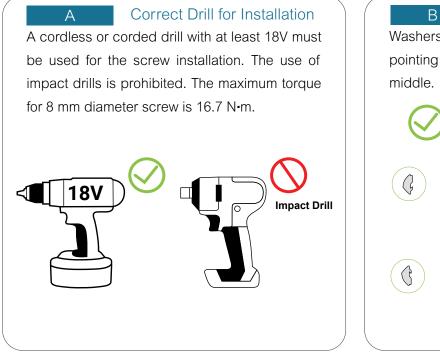


29

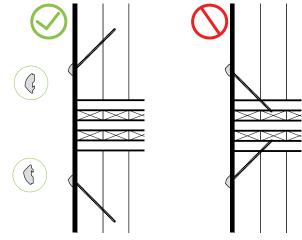

MTS-i - Mass Timber Straps Incline

- All dimensions shown in this page are in mm.
- 2. Listed geometry requirements are valid for both MTS-i 30 and MTS-i 40
- 3. Distances "a" are minimum end distances.





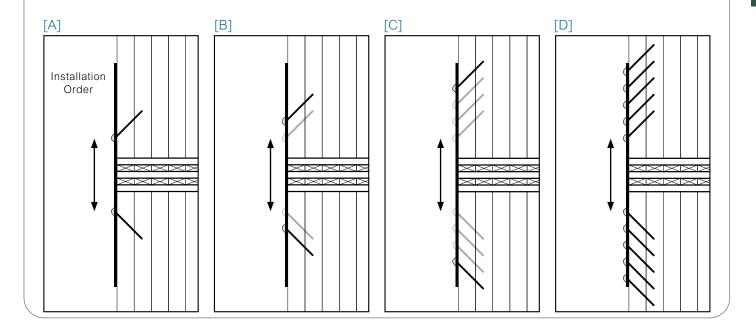
- 4. Distances " a_L " are minimum loaded end distances.
- 5. Distances "e" are minimum edge distances.
- 6. Dimensions not to scale.



Installation Consideration

Washer Orientation

Washers must be installed so that the screw tip is pointing to the outside of the tension strap, not the middle.



Order of Screw Installation

To ensure the tension screws are properly engaged and loads are transferred through the tension strap, the screws must be installed starting from the inner most screw row [A] to the outermost screws [D]. See the order of installation shown below.

С

Failure to install the tension strap with the correct screw order may result in the tension screws engaging and pushing the connector out of place.

MTC Solutions provides sustainable, high quality mass timber connection solutions to a rapidly evolving and thriving industry. We drive innovation through certified research and development and contribute our part to the education of young talent and experienced professionals in the technology used in sustainable design.

WERNER

info@mtcsolutions.com

1.866.899.4090

mtcsolutions.com

