

Structural Screw Connection Design Guide

Disclaimer

The information in this document is provided on an "as is" basis and for general information purposes only. While MTC Solutions aims to keep the information provided in this document complete, accurate, and in line with state-of-the-art design methods, MTC Solutions, its affiliates, employees, agents, or licensors do not make any representations or warranties of any kind, including, but not limited to, express or implied warranties of fitness for a particular purpose or regarding the content or information in this document, to the full extent permitted by applicable law.

The information in this document does not constitute engineering or other professional advice, and any reliance users place on such information is therefore strictly at their own risk. Images and drawings provided within this document are for reference only and may not apply to all possible conditions. MTC Solutions shall not be liable for any loss or damage of any kind, including indirect, direct, incidental, punitive, or consequential loss or damage arising out of, or in connection with, the information, content, materials referenced, or the use of any of the systems described in this document. Users may derive other applications which are beyond MTC Solutions' control. The inclusion of the systems or the implied use of this document for other applications is beyond the scope of MTC Solutions' responsibility.

TABLE OF CONTENTS

GENERAL INFORMATION	10
INFORMATION ABOUT MASS TIMBER	14
Wood Failure Modes and Reinforcing Solutions	14
Withdrawal Design in Narrow Panel Edge	15
Swelling and Shrinkage of CLT	15
HOW TO USE THIS GUIDE	16
About this Guide	16
Design Table Guidelines	16
Connection Resistance Calculation	16
Connection Design	17
GENERAL NOTES TO THE DESIGNER	18
TYPICAL PANEL TO PANEL CONNECTIONS	21
CLT Butt Joint Connection in Shear	22
CLT Lap Joint Connection in Shear	24
CLT Lap Joint with Inclined Screws	26
CLT Lap Joint Notch Reinforcement	28
CLT Lap Joint with Inclined Screws in Shear	30
CLT Surface Spline Connection in Shear	32
NLT Butt Joint Connection in Shear	36
PANEL TO BEAM CONNECTIONS	39
CLT Panel to Beam Connection in Shear	40
CLT Floor to Beam Connection	44
CLT Panel to Beam Connection with Inclined Screws	46
NLT Panel to Beam Connection in Shear	48
NLT Panel to Beam Connection with Inclined Screws	49
CLT Panel to Steel Beam Connection	50
NLT Panel to Steel Beam Connection	52
POST TO BEAM CONNECTIONS	
Beam Hanger Systems	54
Post to Beam Connection - Bearing	57
Beam to Jack Stud Connection	58
Wood Beam to Steel Column - Shear Screws	60
Wood Beam to Steel Column - Inclined Screws	61
Beam Bearing Straps - Shear Screws	62

Beam Bearing Straps - Inclined Screws	
Wood Beam to Steel Column - Bottom Plate	64
Housed CLT Floor Uplift Connections	65
LEDGER CONNECTIONS	66
CLT Ledger Connection - 90° Shear Screws Only	67
Ledger Board to Rim Joist Connection	72
Ledger Board to Stud Wall Connection	74
Specific Ledger to Stud Connection Design	75
FLOOR TO WALL CONNECTIONS	76
CLT Floor to Wall Connections in Shear	77
CLT Floor to Top Plate Connection - Top Screwed	79
CLT Floor to Top Plate Connection - Bottom Screwed	80
NLT Floor to Top Plate Connection - Inclined Screws	81
WALL CONNECTIONS	82
Brick Veneer to Wall Connection	82
Top Plate to Stud Lateral Connection	84
STEEL TO WOOD CONNECTIONS	
CLT Panel with Steel Side Plate in Shear	88
CLT and Steel Plate with Inclined Screws	90
Steel Beam to Wood Connection	92
DETAILING SECTION	94
Geometry Requirements	94
HARDWARE	
ASSY Ecofast	98
ASSY SK	
ASSY Kombi	102
ASSY VG CSK	103
ASSY VG Cyl	
Bits - AW Drive	
45° Washer	106

At MTC Solutions, our core focus is to supply structural hardware for modern mass timber applications in commercial, industrial, and residential projects. We are proud to partner with leading industry experts, providing solutions and tools to design code-compliant buildings that are pushing the boundaries of the North American construction industry.

Our in-house team of mass timber specialists support professionals in designing connections that are tailored to the specific needs of each project, resulting in truly innovative and cost-efficient solutions. We are recognized as experts, moving the industry forward with tested and proven solutions.

Commitment

North American Tailored Products

We provide the knowledge and tools to help our customers build cutting-edge and code-compliant mass timber projects while pushing the boundaries of the North American construction industry.

We are dedicated to making your project a success, from design and installation support to delivering high quality products with speed and accuracy. We partner with leading research facilities across North America to ensure our products are tested and customized to fit the unique needs of the market, from seismic considerations to solutions for large post and beam structures in various climates.

Find Your Connection Solution

MTC Solutions provide the right tools to design code-compliant buildings, educating the mass timber industry on connection solutions.

Structural Screw Connection Design Guide

Structural Fasteners

Accessories

Beam Hangers Design Guide

Beam Hangers

Connector Design Guide

Connectors

Rigging Design Guide

Rigging Devices

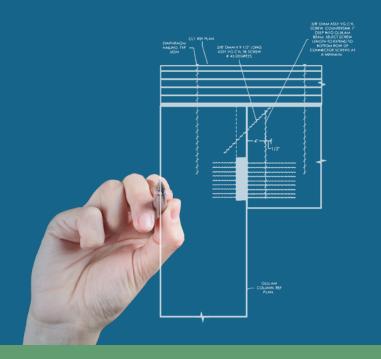
Fall Arrest Anchor Design Guide

Fall Arrest

YOUR MASS TIMBER HARDWARE SUPPLIER

Rely on our distribution team to deliver your North American projects with speed and accuracy.

LEADING WITH INNOVATION & RESEARCH


We are leading the mass timber industry with cutting edge connection solutions and partnering with renowned research facilities.

WE MAKE YOU THE EXPERT

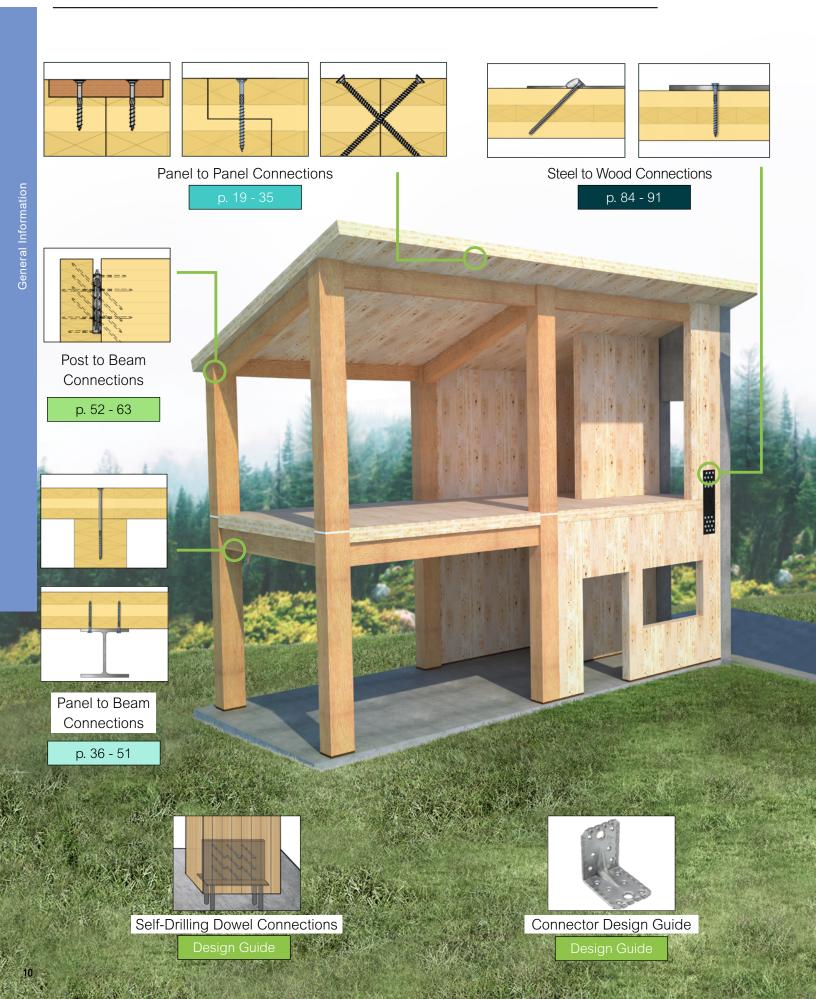
Learn about the right solutions for your projects and Mass Timber connections with our technical resources & support team!

CONNECTIONS DESIGN SUPPORT

Reach out to the technical team for design support, from early design stages to ongoing iterative changes. We help find the most efficient connection solutions.

MANUFACTURERS' HELP DESK

Use our comprehensive & practical resources to find the most cost-effective solutions for your structural elements.



TESTED & PROVEN SOLUTIONS

Count on MTC Solutions' 10+ years of expertise, providing tested & proven ICC approved solutions, support, and resources.

General Information

The Structural Mass Timber Fastening Design Guide

This guide is the result of years of research in the North American mass timber market, industry partnerships and hands-on engineering experience. The solutions presented in this guide are found to be efficient and practical.

These solutions are achieved by using high quality hardware, evaluated through testing. This effort makes this guide the ultimate tool for designer to refer to.

Research and Testing

Designers can have peace of mind knowing that the values listed in this guide are confirmed through testing. Testing is conducted in collaboration with universities across North America using North American wood species that are readily available on the market. All testing follows applicable standards for the United States and Canada.

Certifications

Code-approved and reliable, ASSY fasteners were awarded with ICC-ESR approval in the US and by the Canadian Construction Materials Centre (CCMC) in Canada.

Our suppliers follow the strictest manufacturing processes and are under third party quality control by North American authorities. Our high-quality product comes with a commitment to high-quality service through our team of product consultants and technical advisors.

Fastener Line

Our self-tapping fasteners, constructed of hardened steel are engineered to fit the special needs of the North American mass timber market. Available in a wide variety of shapes and sizes, our fastener line provides viable mass timber connection solutions for all structural timber systems.

Engineered Head

Multiple head types available

Shank

Large selection of diameters and lengths available

Case Hardened Steel

Up to 3 times the bending yield strength of generic lag screws

Shank Cutter

Reduces torque during installation

Large Thread

Provides high withdrawal resistance

Self Tapping Tip

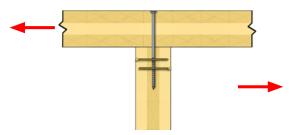
Eliminates the need for pre-drilling and provide easy installation

CERTIFICATIONS

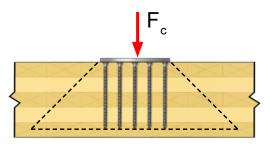
ICC-ESR-3178 ICC-ESR-3179

ISO 50001

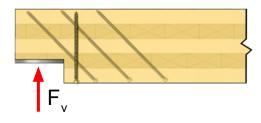
Information about Mass Timber

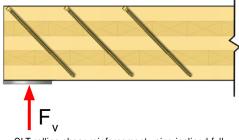

Wood Failure Modes and Reinforcing Solutions

The high withdrawal resistance and tensile strength of fully threaded self-tapping screws can be used in many ways to compensate for low strength loading directions in timber or CLT. Some common failure modes and reinforcing solutions are explained below.


In conventional timber design, tensile stresses perpendicular to grain are generally avoided. North American design standards do not provide designers with capacities in this loading direction due to the brittle failures that occur. For CLT, perpendicular to grain tensile loading is a typical loading direction for fasteners installed on the narrow edge of CLT panels. In some cases, these fasteners have the capacity to over-stress the CLT if it is loaded out of plane.

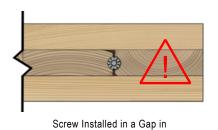
Notches at the tension face of bending members can also overstress the CLT members. In many cases, fully threaded fasteners can be designed to transfer the tensile load components, preventing accidental brittle failure modes. Compressive stresses perpendicular to the grain typically do not cause brittle failure modes, however, timber strength in this direction is low. Designers can compensate for this low strength by using fully threaded screws and taking advantage of their high axial resistance. Compressive load components are transmitted into the panel through the screws, where the stresses are then diffused. Transferring the compressive loads through the screws increases the effective bearing area resulting in more effective force distribution.


CLT can sometimes be limited by the relatively low rolling shear strength and stiffness of the crossing plies. Reducing the thickness of cross layers may mitigate this issues of low rolling shear strength and stiffness. Fully threaded screws can be used to reinforce the CLT against shear stresses activated by panel bending as well as point loads.


CLT floor to wall connection reinforcement to minimize risk of brittle failures

CLT bearing reinforcement with full thread screws to increase the virtual bearing area

CLT notch reinforcement with a full thread screws



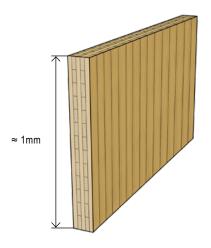
CLT rolling shear reinforcement using inclined full thread screws

Withdrawal Design in Narrow Panel Edge

For fasteners installed on the narrow edge of the panel loaded in withdrawal, an end grain reduction factor of $J_{\text{E}}=0.67$ is assigned to reference withdrawal design values, as per CSA O86-19 Clause 12.6.6.1.

Designers should be mindful of the possibility of gaps on the narrow edge of CLT, as there is a risk they will run parallel to the screw axis. Long term loading of fasteners in withdrawal from the narrow edge of CLT is not recommended if the fastener is installed parallel to grain. Screws can be installed at an angle of 75° to the edge surface to counteract the presence of both end grain and gaps. Long length screws (at least 20D penetration) are recommended over short screws.

the Narrow Edge



Screw Installed in the Narrow Edge

Swelling and Shrinkage of CLT

According to Clause 8.3.2 of CSA O86-19, crosslaminated timber is specified for dry service conditions unless specifically permitted by the manufacturer. Nonetheless, there is a chance CLT panels may be exposed to the elements during construction. CLT is considered dimensionally stable, for the most part, against swelling and shrinking in-plane if changes in moisture occur. However, designers should consider the effects of swelling and shrinkage perpendicular to the panel plane, as this can affect connection integrity.

- For a 105mm 3 ply S.P.F.panel to a 300mm S.P.F. panel, swelling and shrinkage may vary from ≈ 4mm to ≈ 12mm.
- * 6mm is for a 175mm 5 ply CLT panel.

How to Use this Guide

About this Guide

This connection design guide will help designers to get an overview of connection design with CLT in accordance with applicable design standards. State-of-the-art structural details are visualized in an easy-to-read table format.

All Factored Resistances presented in this document have been estimated following applicable provisions in the CSA O86-19 or derived from testing following the Canadian Construction Materials Centre (CCMC) data analysis guideline.

Design Table Guidelines

CLT Loading Conditions

Summary figure of the CLT panels orientation and load direction (See page 15)

Panel Thickness (t)

The overall panel thickness is shown by "t". The thickness for each individual layer is also shown as "t"

Fastener Information

Description of the fastener applicable for the given connection parameters, including diameter and length

Factored Resistances

Fastener(s) reference strength in the loading directions applicable to the connection

	Pa	anel & Joint Configuration		_ ,	Factored Re	Minimum		
Loading Panel Thickness			Panel Thickness	Fastener Options	Standard Loading K _D =1.0	Short Term Loading K _D =1.15	Spacing in a Row (S _P)	
3 PLY	N' _{//}		105	VG Cyl 6 x 140	123	141	25	
							7	

Relative Density (G)

The assigned relative density of the material used for the calculations are the following:

Douglas Fir G = 0.49

Tables Color Code

The colors represents the diameter of the fastener used in the connection:

12mm screw

- 6mm screw
- 8mm screw
 10mm screw

Dimensions

Dimensions and spacing requirements are shown in millimeters [mm], except if otherwise specified.

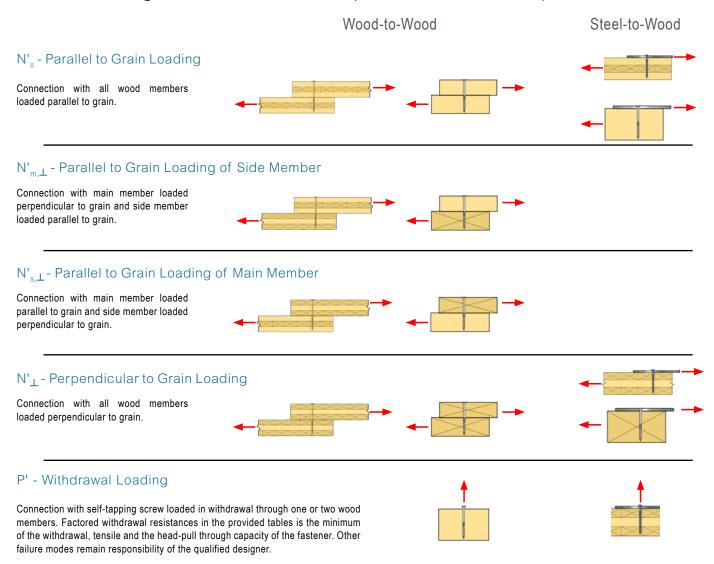
Connection Resistance Calculation

$$N_r = N' \cdot n_F \cdot n_R \cdot K'$$

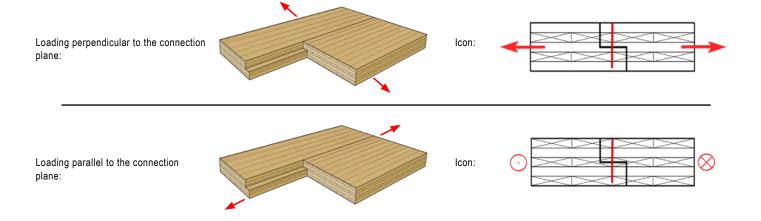
$$P_{rw} = P' \cdot n_F \cdot n_R \cdot K'$$

 $\mathrm{N_{r}}\,\mathrm{or}\;\mathrm{P_{rw}}\,$ Factored lateral strength or withdrawal resistance of a connection

N' or P' Factored lateral strength or withdrawal resistance (N' $_{//}$, N' $_{m,\perp}$, N' $_{s,\perp}$, N' $_{\perp}$ or P') given in the provided design tables or calculated in accordance with CSA O86-19 clause 12.6


n_e Number of effective fasteners in a row

n_R Number of rows in a connection


K' The adjustment factors for the connection, composed of: K_D ; K_{SF} ; K_T ; J_G ; J_{PL} ; J_E The J_X factor for CLT is included in the calculation of the factored resistances.

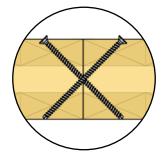
Connection Design

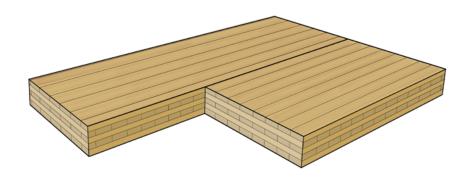
The load relation to grain orientation is based on the plie's orientation in the shear plane.

Load scenarios for different CLT connections are using icons as shown below:

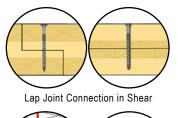
- Factored resistances presented in this design guide are based on CSA 086, CCMC 13677-R 2020, and boundary conditions outlined in ETA-11/0190 unless noted otherwise.
- 2. All suggestions and details shown are to be treated as general and cannot be assumed to be valid for all construction requirements and specific site conditions.
- 3. Connections must respect the geometry requirements as specified in the Detailing Section of this guide and CSA O86.
- 4. Factored resistances must be factored in accordance with all applicable adjustment factors of CSA 086-19, Clause 12.6.
- 5. Maximum factored drive in torque of the fasteners must be respected, see the Detailing Section, Table S.4.
- 6. Carbon steel ASSY screws are intended to be used in untreated wood under dry service conditions and temperatures below 100°F such that K_{SF} =1.0 and K_{τ} =1.0.
- 7. For standard term loading, load duration factor is $K_D=1$. For short term loading, load duration factor is $K_D=1.15$, as per CSA O86-19 clause 5.3.2.
- 8. Listed factored resistance apply to different timber species according to their respective relative densities (G).
- For connection with inclined axially loaded screws, the listed factored resistances are given along the line of the force. The vector has already been projected from the screw's axis to the shear plane of the connection.

- 10. A pilot hole may be used to facilitate the installation of long self-tapping screws. Pilot holes of at least 3" (76mm) in depth should be used when screws are installed near the edge of the wood member or in the end grain. Pilot hole diameter must not exceed the minor diameter of the fastener.
- 11. The designer must ensure that all possible stress limits in the wood members, such as the shear capacity, the rolling shear capacity of the Cross Laminated Timber (CLT) or other material properties, are not exceeded, and continuous load path is assured.
- 12. A load bearing connection shall consist of at least two (2) ASSY screws.
- 13. For CLT connections, listed factored resistances apply to CLT with G = 0.42 or higher.
- 14. Wood species should be assumed to be SPF with G = 0.42 if not otherwise specified.
- 15. In wood species sensitive to splitting, minimum geometry requirements may be required to be increased.
- 16. Example details do not show all required nails or other fasteners for clarity.
- 17. Dimensions and spacing requirements are shown in millimeters [mm], except if otherwise specified.
- 18. With approval from a design professional;
 - ASSY VG Cyl screws may be replaced with ASSY VG CSK
 - ASSY Ecofast screws may be replaced with ASSY SK screws.

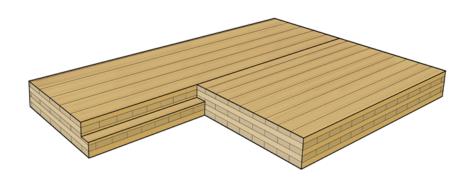


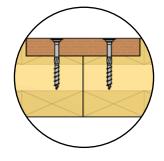

Typical Panel to Panel Connections

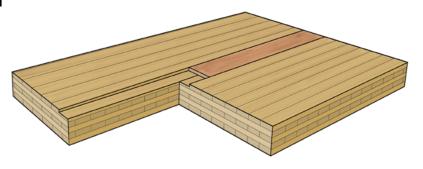
Floor-to-floor connections are mainly designed to transfer in-plane shear forces, with the panels acting as a diaphragm. Several joint types are used in construction, offering differences in application, price, capacity and ease of installation. In the following section, the three most common floor-to-floor joints are presented.


- The Butt joint is the simplest connection type from a fabrication point of view, as the panels are simply cut straight at the edges. It requires short machining time and less material is lost during production.
- Lap joints require more prefabrication than butt joints. For this, part of the panel width is removed when installed. Lap joints offer the largest variety of connection performances.
- **Spline joints** are similar to butt joints, but rather than installing the fastener at an incline, sections of the CLT are cut out to accept splines usually made from standard plywood.

Butt Joint Connection

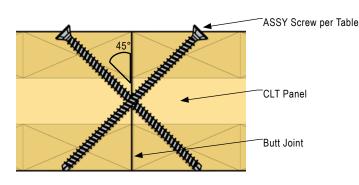



Lap Joint Connection



Lap Joint Connection with Inclined Screws

Surface Spline Connection



CLT Butt Joint Connection in Shear

The simple butt joint is one of the most cost effective methods of transferring in-plane shear between CLT panels because they only require square edge faces to be connected. Screws are installed at a 45° angle to the edge face, creating a mechanical connection at a depth of half the panel thickness.

Pre-drill jigs can be used to create short lead holes which help to assure consistent angle of installation between screws.

Due to minimum penetration requirements, butt joint connections can only be used for panel thicknesses of 105mm and above.

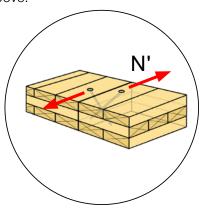
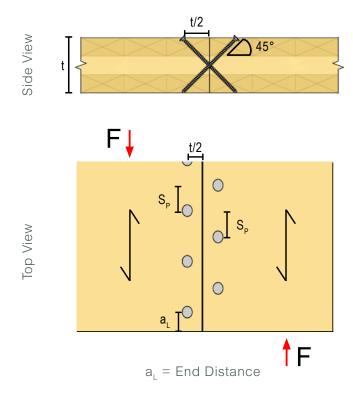



Table PP.1.1, Factored Resistances for CLT Butt Joints Loaded in Shear

	Pa	anel & Joint Configuration			Factored Re	esistance [N]	Minimum		
		Loading	Panel Thickness (t)	Fastener Options	Standard Loading K _D =1.0	Short Term Loading K _D =1.15	Spacing in a Row (S _p)		
3 PLY	N',,	⊗	105	VG Cyl	664	764	24		
	N' _⊥	⊗	105	6 x 140	464	534	24		
					139	VG CSK 8 x 180	1169	1344	32
	N',,	⊗ ○	175	VG CSK 8 x 220	1169	1344	32		
PLY			1/5	VG CSK 10 x 220	1721	1979	40		
5 P		⊗ ⊙	139	VG CSK 8 x 180	798	918	32		
	N' _⊥		175	VG CSK 8 x 220	817	940	32		
				VG CSK 10 x 220	1160	1334	40		

- Factored resistances apply to a single fastener, conforming to the connection geometry
 and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Fasterner placement must respect the geometry requirements presented in the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- Factored resistances require the fasteners to be installed at a 45° angle intersecting the shear plane at half the panel thickness. The angle between force and fastener axis is 90°.
- End grain factor (J_E = 0.67) is not included in the Factored Resistance because test have shown that the Factored Resistance presented are already conservative.
- 7. N'_{\parallel} Angle between loading direction and wood grain in the shear plane $\Theta = 0^{\circ}$.
 - N'_{\perp} Angle between loading direction and wood grain in the shear plane Θ = 90°.


Geometry Requirements

CLT Lap Joint Connection in Shear

The lap joint is a common panel-to-panel connection employed with CLT panels, largely due to ease of installation. Reinforcing screws can be considered to strengthen the panel across the grain (similar to notch reinforcement) where out of plane load transfer is anticipated across the joint. As with any lateral connection design with CLT, the grain direction at the shear plane is used as a base of reference.

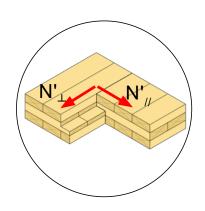


Table PP.2.1, Factored Resistances for CLT Lap Joints Loaded in Shear

P	anel & Joint Configuratior			Factored Re	Minimum	
Loading Panel Thickness (t)		Fastener Options	Standard Loading K _D =1.0	Short Term Loading K _D =1.15	Spacing in a Row (S _P)	
NI,	and	105	Eco 6 x 90	669	769	24
N' _{//}		105	Eco 8 x 100	973	1119	32
NI?	and	105	Eco 6 x 90	352	405	24
N'⊥	and ⊗	105	Eco 8 x 100	476	547	32

Notes:

- Factored resistances apply to a single fastener, conforming to the connection geometry and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Fasterner placement must respect the geometry requirements presented in the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- It is recommended that panel-to-panel CLT lap joint connections be reinforced if potential loads may occure in a direction promoting CLT notch failures.
- Factored resistances require the fasteners to be installed at a 90° angle intersecting the shear plane at half the panel thickness.
- 7. The angle between force and fastener axis is 90°.
- Factored lateral resistance may be applied to parallel and perpendicular loading towards the panel joint considering grain directions and minimum spacing requirements.
- 9. N'_{\parallel} Angle between loading direction and wood grain in the shear plane $\Theta = 0^{\circ}$.
 - N'_{\perp} Angle between loading direction and wood grain in the shear plane Θ = 90°.

Geometry Requirements

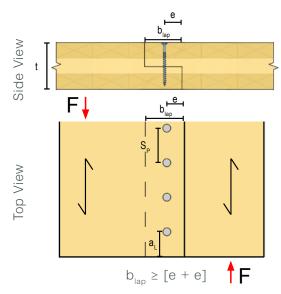
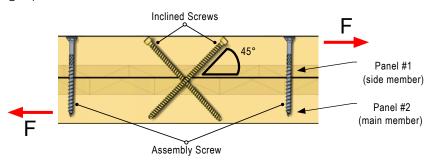


Table PP.2.2, Factored Resistances for CLT Lap Joints Loaded in Shear

	P	anel & Joint Configuratior	1		Factored Re	esistance [N]	Minimum
		Loading	Panel Thickness (t)	Fastener Options	Standard Loading K _D =1.0	Short Term Loading K _D =1.15	Spacing in a Row (S _P)
			132	Eco 6 x 120	887	1020	24
	N,	←	139	Eco 6 x 120	869	999	24
	N' _{//}	and	175 ·	Eco 8 x 160	1567	1802	32
PLY		⊗	170	Eco 10 x 160	2104	2420	40
5 F			132	Eco 6 x 120	532	612	24
	N,	and	139	Eco 6 x 120	518	596	2-1
	N'⊥	and O	175	Eco 8 x 160	921	1059	32
			170	Eco 10 x 160	1111	1278	40
		and S	404	Eco 8 x 180	1567	1802	32
			191	Eco 10 x 180	2285	2628	40
	NI,		221	Eco 8 x 200	1567	1802	32
	N' _{//}		221	Eco 10 x 200	2308	2654	40
			244	Eco 8 x 220	1567	1802	32
PLY			244	Eco 10 x 220	2308	2654	40
7 F			191	Eco 8 x 180	1012	1164	32
			101	Eco 10 x 180	1259	1448	40
	N' _⊥		221	Eco 8 x 200	1043	1199	32
	, T	and		Eco 10 x 200	1397	1607	40
			244	Eco 8 x 220	1091	1255	32
				Eco 10 x 220	1457	1676	40


- Factored resistances apply to a single fastener, conforming to the connection geometry and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Fasterner placement must respect the geometry requirements presented in the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- It is recommended that panel-to-panel CLT lap joint connections be reinforced if potential loads may occure in a direction promoting CLT notch failures.

- Factored resistances require the fasteners to be installed at a 90° angle intersecting the shear plane at half the panel thickness.
- 7. The angle between force and fastener axis is 90°.
- Factored lateral resistancemay be applied to parallel and perpendicular loading towards the panel joint considering grain directions and minimum spacing requirements.
- 9. N'_{\parallel} Angle between loading direction and wood grain in the shear plane $\Theta = 0^{\circ}$.
 - N'_{\perp} Angle between loading direction and wood grain in the shear plane $\Theta = 90^{\circ}$.

CLT Lap Joint with Inclined Screws

A mechanical connection can be made across a lap joint using screws inclined at a 45° angle. Inclined screws tend to produce stiffer connections with higher loading capacities. Short pilot holes may be predrilled with the help of drill jigs to ensure consistent angle placement.

Factored resistances provided below refer to the case of forces acting parallel to the line of joint. Generally, all other characteristics of the lap joint loaded in shear apply.

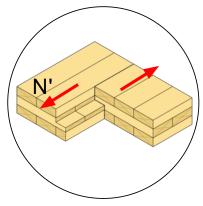
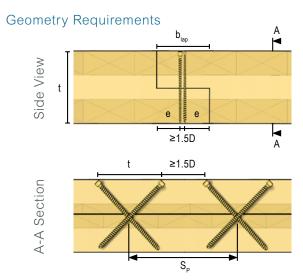



Table PP.3.1, Factored Resistances for CLT Lap Joints with Inclined Screw Crosses

	Panel & Joint Configuration				Factored Resistance [P	Minimum	
	Loading		Panel Thickness (t)	Fastener Options	Standard Loading K _D =1.0	Short Term Loading K _D =1.15	Spacing in a Row (S _P)
PLY	N' _{//}	⊗	105	VG Cyl	3,160	3,640	42
3 P	N' _⊥	⊗ <u> </u>	105	6 x 140	3,330	3,830	42

- Factored resistances listed apply to two fasteners installed in a screw cross configuration, conforming to the connection geometry and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Fasterner placement must respect the geometry requirements presented in the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- It is recommended that panel-to-panel CLT lap joint connections be reinforced if potential loads may occure in a direction promoting CLT notch failures.

- Factored resistances require the fasteners to be installed at a 45° angle intersecting the shear plane at half the panel thickness.
- 7. The angle between force and fastener axis is 45°.
- 8. Factored lateral resistance only apply to parallel loading along the panel joint.
- Due to stiffness differences, assembly screws may not be assumed to take any load. They are only there to facilitate installation and insure a tight fit panel joint.
- The upper limit of the factored withdrawal resistance is set by the factored tensile strength of fastener, no further increase are allowed. WYW
- N'_{II} Factored resistance per screw cross in tension with panel joint along major span direction of CLT panel.
 - ${\rm N'_{\perp}}$ Factored resistance per screw cross in tension with panel joint along minor span direction of CLT panel.

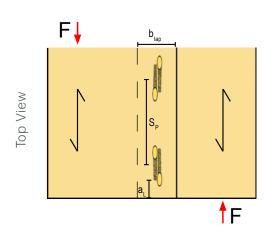


Table PP.3.2, Factored Resistances for CLT Lap Joints with Inclined Screw Crosses

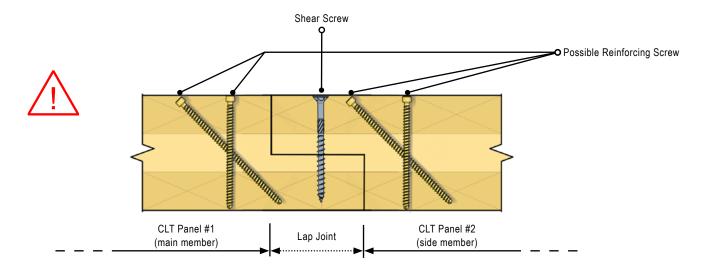
	P	anel & Joint Configuration	1			ce per Screw Cross N]	Minimum
		Loading	Panel Thickness (t)	Fastener Options	Standard Loading K _D =1.0	Short Term Loading K _D =1.15	Spacing in a Row (S _p)
		⊗ ○	139	VG CSK 8 x 180	5,100	5,870	56
	N',,		175	VG CSK 8 x 220	6,260	7,200	56
۲			175	VG CSK 10 x 220	7,630	8,770	70
5 PLY			139	VG CSK 8 x 180	5,520	6,350	56
	N'⊥	⊗ ⊙	175	VG CSK 8 x 220	6,460	7,430	56
			175	VG CSK 10 x 220	7,870	9,050	70
		8		VG CSK 8 x 260	8,130	9,350	56
			191	VG CSK 10 x 260	9,950	11,450	70
	.		220	VG CSK 8 x 260	6,840	7,870	56
	N' _{//}			VG CSK 10 x 260	8,350	9,600	70
			244	VG CSK 8 x 300	8,470	9,740	56
PLY			244	VG CSK 10 x 300	10,370	11,930	70
7 P			191	VG CSK 8 x 260	8,730	10,040	56
			191	VG CSK 10 x 260	10,690	12,300	70
	NI,	⊗	220	VG CSK 8 x 260	7,130	8,200	56
	N'⊥		220	VG CSK 10 x 260	8,700	10,000	70
			244	VG CSK 8 x 300	8,660	9,950	56
			244	VG CSK 10 x 300	10,600	12,190	70

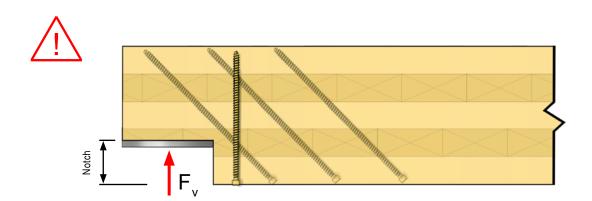
- Factored resistances listed apply to two fasteners installed in a screw cross configuration, conforming to the connection geometry and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Fasterner placement must respect the geometry requirements presented in the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- It is recommended that panel-to-panel CLT lap joint connections be reinforced if potential loads may occure in a direction promoting CLT notch failures.
- Factored resistances require the fasteners to be installed at a 45° angle intersecting the shear plane at half the panel thickness.

- The angle between force and fastener axis is 45°.
- 8. Factored lateral resistance only apply to parallel loading along the panel joint.
- Due to stiffness differences, assembly screws may not be assumed to take any load. They
 are only there to facilitate installation and insure a tight fit panel joint.
- The upper limit of the factored withdrawal resistance is set by the factored tensile strength of fastener, no further increase are allowed.
- N'_{||} Factored resistance per screw cross in tension with panel joint along major span direction of CLT panel.
 - N'_ Factored resistance per screw cross in tension with panel joint along minor span direction of CLT panel.

CLT Lap Joint Notch Reinforcement

Floor to floor connections are typically designed to transfer in-plane diaphragm forces acting parallel to the line of the joint. Design of the floor system will typically minimize vertical load transfer caused by out-of-plane forces.


Coding standards, including the CSA O86, do not provide directives for notches on the tension side of CLT panels. Therefore, there are no fully developed procedures outlining the unique material characteristics, stress distribution patterns and crack propagation path along the unglued lamella edges within the CLT.


Designers are asked to be more conservative when designing notches with out of plane loading or to avoid them whenever possible.

Reinforcing notched members with fully threaded selftapping fasteners may prevent brittle failure mode through the screws high axial capacity.

For Glued Laminated Timber, notches shall not exceed 1/4 of the beam depth as per 7.5.7.5; CSA 086 2019.

CLT Lap joint connections are two notched members connected together

CLT Lap Joint with Inclined Screws in Shear

Loading parallel to the panel joint will result in the screws being loaded by a force component along the axis. The factored lateral resistances is calculated according to the lateral component of the withdrawal or tensile strength of the fastener. Loading perpendicular

to the panel joint of an inclined screw application in a lap joint will result in the screw being loaded perpendicular to the axis. In this case, connection strength is calculated in accordance with CSA O86-19 Clause 12.6.5.

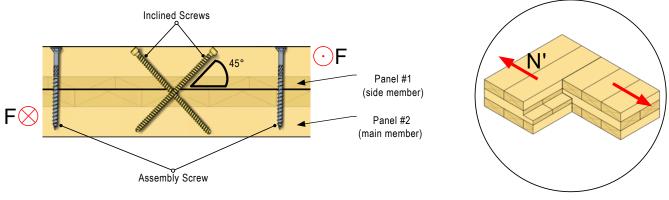
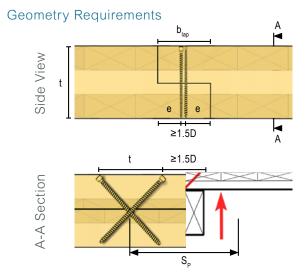



Table PP.4.1, Factored Resistances for CLT Lap Joints with Inclined Screw Crosses

	Panel & Joint Configuration				Factored Re	Minimum	
	Loading		Panel Thickness (t)	Fastener Options	Standard Loading K _D =1.0	Short Term Loading K _D =1.15	Spacing in a Row (S _p)
LΥ	N' _{//}		105	VG cyl	664	764	42
3 P	N' _⊥		100	6 x 140	464	534	42

- Factored resistances apply to a single fastener, conforming to the connection geometry and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- 4. Fasterner placement must respect the geometry requirements presented in the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- It is recommended that panel-to-panel CLT lap joint connections be reinforced if potential loads may occure in a direction promoting CLT notch failures.

- 6. Due to stiffness differences, assembly screws may not be assumed to take any load. They are only there to facilitate installation and insure a tight fit panel joint.
- Factored resistances require the fasteners to be installed at a 45° angle intersecting the shear plane at half the panel thickness.
- 8. The angle between force and fastener axis is 90°.
- Factored lateral resistance only apply to perpendicular loading towards the panel joint considering grain directions and minimum spacing requirements.
- 10. N'_{\parallel} Angle between loading direction and wood grain in the shear plane $\Theta = 0^{\circ}$.
 - N'_{\perp} Angle between loading direction and wood grain in the shear plane $\Theta = 90^{\circ}$.

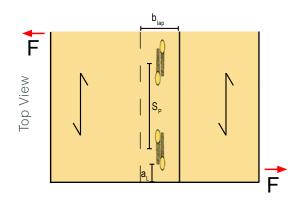


Table PP.4.2, Factored Resistances for CLT Lap Joints with Inclined Screw Crosses

	P	anel & Joint Configuration	1		Factored Ro	esistance [N]	Minimum
		Loading	Panel Thickness (t)	Fastener Options	Standard Loading K _D =1.0	Short Term Loading K _D =1.15	Spacing in a Row (S _P)
			139	VG CSK 8 x 180	1,169	1,344	56
	N',,		175	VG CSK 8 x 220	1,169	1,344	56
5 PLY			175	VG CSK 10 x 220	1,721	1,979	70
5 P			139	VG CSK 8 x 180	798	918	56
	N'⊥	←	175	VG CSK 8 x 220	817	940	56
			175	VG CSK 10 x 220	1,160	1,334	70
				VG CSK 8 x 260	1,169	1,344	56
			190	VG CSK 10 x 260	1,721	1,979	70
	N.17		221	VG CSK 8 x 260	1,169	1,344	56
	N' _{//}			VG CSK 10 x 260	1,721	1,979	70
			044	VG CSK 8 x 300	1,169	1,344	56
PLY			244	VG CSK 10 x 300	1,721	1,979	70
7 P			190	VG CSK 8 x 260	817	940	56
			190	VG CSK 10 x 260	1,203	1,383	70
	N'⊥		221	VG CSK 8 x 260	817	940	56
	IN T		221	VG CSK 10 x 260	1,203	1,383	70
			244	VG CSK 8 x 300	817	940	56
			Z- 11	VG CSK 10 x 300	1,203	1,383	70

- Factored resistances apply to a single fastener, conforming to the connection geometry and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Fasterner placement must respect the geometry requirements presented in the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- It is recommended that panel-to-panel CLT lap joint connections be reinforced if potential loads may occure in a direction promoting CLT notch failures.

- Due to stiffness differences, assembly screws may not be assumed to take any load. They
 are only there to facilitate installation and insure a tight fit panel joint.
- Factored resistances require the fasteners to be installed at a 45° angle intersecting the shear plane at half the panel thickness.
- 8. The angle between force and fastener axis is 90°.
- Factored lateral resistance only apply to perpendicular loading towards the panel joint considering grain directions and minimum spacing requirements.
- 10. N'_{II} Angle between loading direction and wood grain in the shear plane Θ = 0°.
 - N'_{\perp} Angle between loading direction and wood grain in the shear plane Θ = 90°.

CLT Surface Spline Connection in Shear

Surface spline connections are made using standard plywood placed into a routed section on the panel surface across the joint. Spline connections require additional machining compared to butt joints, although there is less material loss in terms of panel thickness compared to half-lap joints.

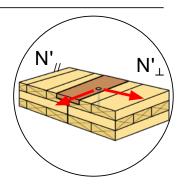
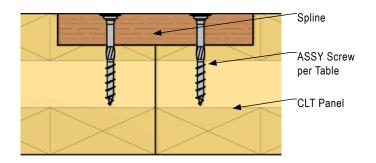



Table PP.5.1, Factored Resistances for CLT Surface Spline Joints Loaded in Shear

		Panel & Spline Config	uration			Factored R	esistance [N]	B411
		Loading	Spline Thickness	Panel Thickness (t)	Fastener Options	Standard Loading K _D =1.0	Short Term Loading K _D =1.15	Minimum Spacing in a Row (S _p)
			12.7	87 105	Eco 6 x 80	590	679	
		and	19.1	79	Eco 6 x 70	631	726	42
				87	Eco 6 x 80	657	756	
	N',,			105	Eco 6 x 80	037	730	
				103	Eco 8 x 90	1042	1198	56
			25.4	105	Eco 6 x 80	724	833	42
7				103	Eco 8 x 90	1051	1209	56
3 PLY			12.7	87 105	Eco 6 x 80	421	484	
				79	Eco 6 x 70	412	474	42
		←	40.4	87	Eco 6 x 80	Eco 6 x 80	507	
	N' _⊥	and	19.1	105	Eco 6 x 80	458	527	
		8		105	Eco 8 x 90	644	741	56
			25.4	405	Eco 6 x 80	496	570	42
			25.4	105	Eco 8 x 90	693	797	56

- Factored resistances apply to a single fastener, conforming to the connection geometry and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Fasterner placement must respect the geometry requirements presented in the
 minimum spacing, edge, & end distance requirements for ASSY screws, as specified in
 the Detailing Section of this guide, pages 92 to 104.
- Factored resistances require the fasteners to be installed at a 90° angle, intersecting the shear plane in the CLT panel at a depth equal to the spline thickness.
- 6. The angle between force and fastener axis is 90°.
- Factored lateral resistance may be applied to parallel and perpendicular loading towards the panel joint considering grain directions and minimum spacing requirements.
- 8. N'_{\parallel} Angle between loading direction and wood grain in the shear plane $\Theta = 0^{\circ}$.
 - N'_{\perp} Angle between loading direction and wood grain in the shear plane Θ = 90°.

Geometry Requirements

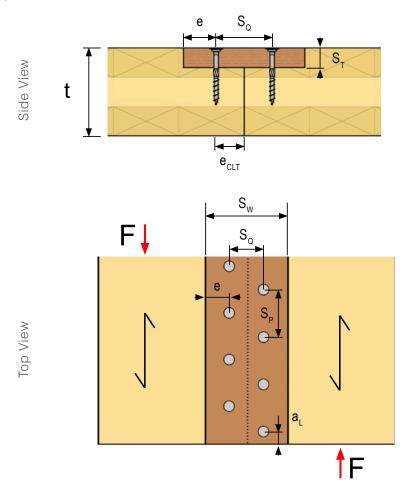


Table PP.5.2, Factored Resistances for CLT Surface Spline Joints Loaded in Shear

		Panel & Spline Config	uration				Factored Re	esistance [N]	Minimum
		Loading	Spline Thickness	Panel Thickness (t)		Fastener Options	Standard Loading K _D =1.0	Short Term Loading K _D =1.15	Spacing in a Row (S _P)
			19.1	133					
		and		139		Eco 8 x 120	1066	1226	
				175					
	N',		25.4	133		Eco			56
	" //			139		8 x 120	1153	1326	
PLY				175		Eco 8 x 120			
				175	170	Eco 10 x 120	1612	1854	70
5				133		Eco 8 x 120	825	949	
			19.1	139					
				175					
	N' _⊥			133		Eco			56
	™ ⊥	and		139		8 x 120	874	1005	
		8 1 0	25.4			Eco 8 x 120			
				175		Eco 10 x 120	1054	1212	70

Notes:

- 1. Factored resistances apply to a single fastener, conforming to the connection geometry and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Fasterner placement must respect the geometry requirements presented in the
 minimum spacing, edge, & end distance requirements for ASSY screws, as specified in
 the Detailing Section of this guide, pages 92 to 104.
- Factored resistances require the fasteners to be installed at a 90° angle, intersecting the shear plane in the CLT panel at a depth equal to the spline thickness.
- 6. The angle between force and fastener axis is 90°.
- Factored lateral resistance may be applied to parallel and perpendicular loading towards the panel joint considering grain directions and minimum spacing requirements.
- 8. N'_{\parallel} Angle between loading direction and wood grain in the shear plane $\Theta = 0^{\circ}$.
 - N'_{\perp} Angle between loading direction and wood grain in the shear plane $\Theta = 90^{\circ}$.

Geometry Requirements

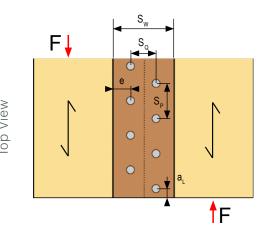


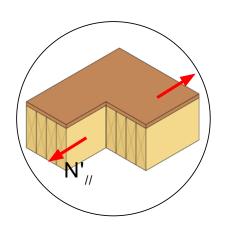
Table PP.5.3, Factored Resistances for CLT Surface Spline Joints Loaded in Shear

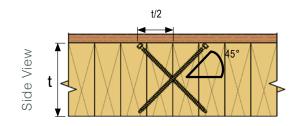
Panel & Spline Configuration					Fastener Options	Factored Resistance [N]		Minimum
Loading Spline Thickness (t)						Standard Loading K _D =1.0	Short Term Loading K _D =1.15	Spacing in a Row (S _P)
7 PLY	N'"	and	19.1	191	Eco 8 x 140	1066	1226	56
				221				
				244				
				191	Eco 8 x 140	1153	1326	56
					Eco 10 x 140	1612	1854	70
			25.4	221	Eco 8 x 140	1153	1326	56
					Eco 10 x 140	1612	1854	70
				244	Eco 8 x 140	1153	1326	56
					Eco 10 x 140	1612	1854	70
	N'⊥	and	19.1	191	Eco 8 x 140	908	1044	56
				221				
				244				
			25.4	191	Eco 8 x 140	995	1144	56
					Eco 10 x 140	1203	1383	70
				221	Eco 8 x 140	995	1144	56
					Eco 10 x 140	1203	1383	70
				244 -	Eco 8 x 140	995	1144	56
					Eco 10 x 140	1203	1383	70

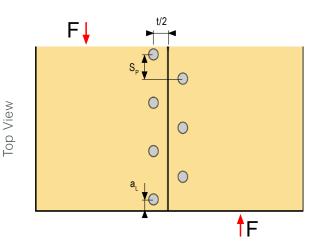
- Factored resistances apply to a single fastener, conforming to the connection geometry and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Fasterner placement must respect the geometry requirements presented in the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- Factored resistances require the fasteners to be installed at a 90° angle, intersecting the shear plane in the CLT panel at a depth equal to the spline thickness.
- 6. The angle between force and fastener axis is 90°.
- 7. Factored lateral resistance may be applied to parallel and perpendicular loading towards the panel joint considering grain directions and minimum spacing requirements.
- 8. N'_{\parallel} Angle between loading direction and wood grain in the shear plane $\Theta = 0^{\circ}$.
 - N'_{\perp} Angle between loading direction and wood grain in the shear plane $\Theta = 90^{\circ}$.

NLT Butt Joint Connection in Shear

The simple butt joint is one of the most cost-effective methods of transferring in-plane shear between NLT or DLT panels. The screws are installed at a 45° angle to the edge face, creating a mechanical connection at a depth of half the panel thickness.



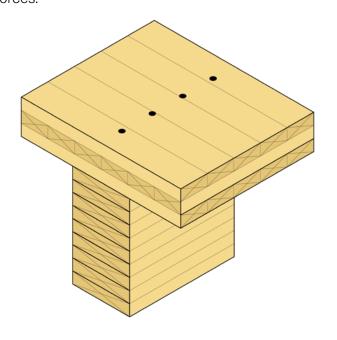

Table PP.6.1, Factored Resistances for NLT Butt Joints Loaded in Shear

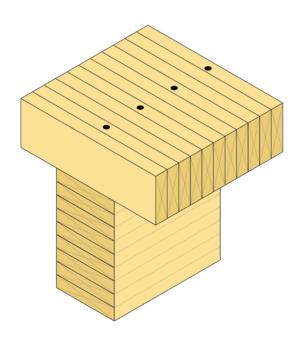

	NLT Panel & Joint Configurati	on		Factored Resistance [N]		Minimum Spacing in a Row (S _p)
Loading		Panel Thickness (t)	Fastener Options	Standard Loading C _D =1.0	Short Term Loading C _D =1.15	
NLT		89	VG Cyl 6 x 140	700	805	45
		140		672	773	
	N',	185	VG Cyl 6 x 180	700	805	
		235	VG CSK 8 x 240	1232	1417	60

Notes:

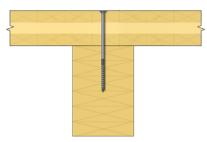
- Factored resistances apply to a single fastener, conforming to the connection geometry and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Fasterner placement must respect the geometry requirements presented in the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- 5. Factored resistances require the fasteners to be installed at a 45° angle, intersecting the shear plane in the NLT panel at a depth equal to the spline thickness.
- 6. The angle between force and fastener axis is 90°.
- 7. N'_{\parallel} Angle between loading direction and wood grain in the shear plane $\Theta = 0^{\circ}$.

Geometry Requirements

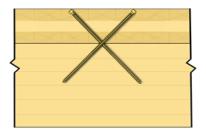




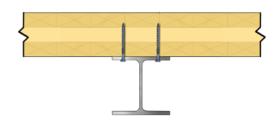
Panel to Beam Connections


For post and beam structures, diaphragm forces are often transferred to collector elements such as beams, which then transfer the forces to the lateral load resisting system on the way down to the foundation. Floor to beam connections often benefit from the high strength and stiffness of fully threaded inclined screws or screw crosses to transfer these high magnitude forces.

Floor to beam connections can also maximize the effective bending stiffness of the two elements through composite action. Inclined fully threaded screws or screw crosses minimize slip at the interface, thereby maximizing connection efficiency with regards to composite effects.



Typical Panel to Glulam Beam Connections

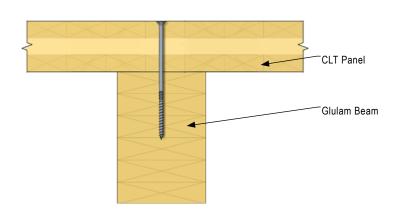


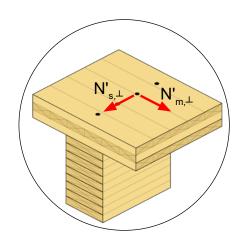
CLT panel to Glulam beam connection with a fastener in shear, see page 38 for details.

Connection with inclined fasteners arranged in a screw cross, see page 44 for details.

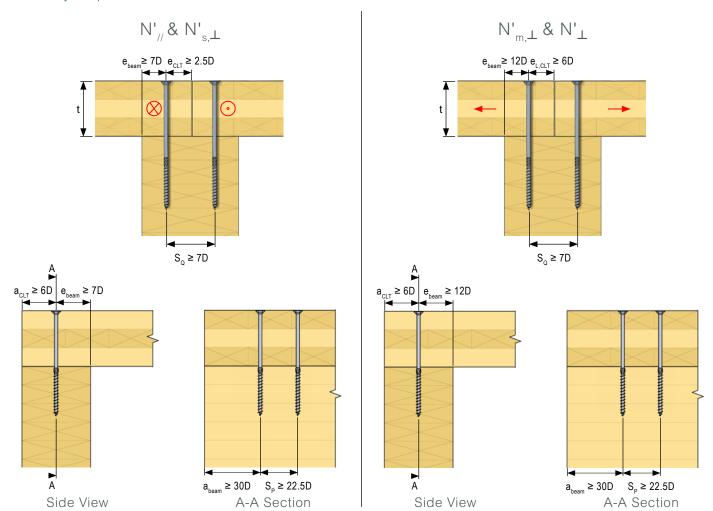
Typical Panel to Steel Beam Connections

CLT deep H-beam connection using shear screws, see Steel to Wood Connections Section.




CLT shallow H-beam connection using shear screws, see Steel to Wood Connections Section.

CLT Panel to Beam Connection in Shear


Partially threaded screws can be used to transfer shear forces and close the gap between two elements when connecting CLT diaphragms.

Four possible connection configurations, based on the angle to grain relationship, are tabulated on the following pages. If the CLT panel or the beam is expected to shrink, screws should be countersunk enough so that they do not push into the concrete slap on top of the CLT panel.

Geometry Requirements

^{1.} Minimum geometry requirements for S.P.F. panels and D.Fir glulam beams.

Table PB.1.1, Factored Resistances for CLT Panel to Beam Connections in Shear

		CLT Panel & Beam Config	guration			Factored Re	esistance [N]	Minimum
		Loading	Beam Type	Panel Thickness (t)	Fastener Options	Standard Loading K _D =1.0	Short Term Loading K _D =1.15	Spacing in a Row (S _P)
				79	Eco	940	1080	135
				87	6 x 160	0.0		
	N'"			105	Eco 6 x 200	940	1080	135
				100	Eco 8 x 200	1660	1910	180
		←		79	Eco	760	870	135
			D-Fir	87	6 x 160	700	870	133
	N' _{m,⊥}			105	Eco 6 x 200	760	870	135
>				103	Eco 8 x 200	1340	1540	180
3 PLY			(0.49)	79	Eco 6 x 160	720	830	135
	NI,	8		87	Eco 6 x 160	690	790	133
	N' _{s,} ⊥			105	Eco 6 x 200	750	860	135
				105	Eco 8 x 200	1190	1370	180
				79	Eco	640	740	135
				87	6 x 160	040	740	133
	N' _⊥			105	Eco 6 x 200	640	740	135
				103	Eco 8 x 200	1225	1410	180

- Factored resistances apply to a single fastener, conforming to the connection geometry and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Fasterner placement must respect the geometry requirements presented in the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- Factored resistances require the fasteners to be installed at a 90° angle intersecting the shear plane at the interface of the CLT panel and supporting beam.
- 6. The angle between force and fastener axis is 90°.

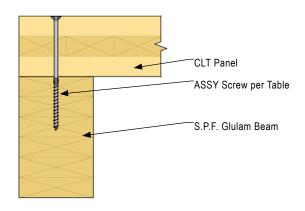
- 7. The main member is assumed as a glulam member with G = 0.49.
- Factored lateral resistance may be applied to parallel and perpendicular loading towards the panel joint considering grain directions and minimum spacing requirements.
- 9. N'_{II} Main member and side member loaded parallel to grain $\Theta = 0^{\circ}$.
 - $N_{m,\perp}^{\prime}$ Main member loaded perpendicular to grain (Θ = 90°); side member loaded parallel to grain (Θ = 0°).
 - N' s, $^{\perp}$ Main member loaded parallel to grain (Θ = 0°); side member loaded perpendicular to grain (Θ = 90°).
 - N'_{\perp} Main member and side member loaded perpendicular to grain Θ = 90°.

Table PB.1.2, Factored Resistances for CLT Panel to Beam Connections in Shear

		CLT Panel & Beam Config	guration				Factored Re	esistance [N]	Minimum
		Loading	Beam Type	Panel Thickness (t)		Fastener Options	Standard Loading K _D =1.0	Short Term Loading K _D =1.15	Spacing in a Row (S _P)
				133		Eco	1660	1910	180
				139	8 x 240	1000	1910	100	
	N',,			175		Eco 8 x 300	1660	1910	180
				175		Eco 10 x 300	2450	2820	225
		-		133		Eco	1340	1540	180
	N' _{m,⊥}		D-Fir (0.49)	139		8 x 240	1340	1540	100
				175		Eco 8 x 300	1340	1540	180
5 PLY				173		Eco 10 x 300	1970	2270	225
5 P				133		Eco	1260	1450	180
				139		8 x 240	1220	1400	160
	N' _{s,} ⊥			175		Eco 8 x 300	1320	1520	180
				175		Eco 10 x 300	1830	2100	225
			133		Eco	1140	1310	180	
				139		8 x 240	1130	1300	100
	N' _⊥			175		Eco 8 x 300	1140	1310	180
				175		Eco 10 x 300	1670	1920	225

- Factored resistances apply to a single fastener, conforming to the connection geometry
 and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and are only valid for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Fasterner placement must respect the geometry requirements presented in the
 minimum spacing, edge, & end distance requirements for ASSY screws, as specified in
 the Detailing Section of this guide, pages 92 to 104.
- Factored resistances require the fasteners to be installed at a 90° angle intersecting the shear plane at the interface of the CLT panel and supporting beam.
- The angle between force and fastener axis is 90°.

- 7. The main member is assumed as a glulam member with G = 0.49.
- Factored lateral resistance may be applied to parallel and perpendicular loading towards the panel joint considering grain directions and minimum spacing requirements.
- 9. N'_{\parallel} Main member and side member loaded parallel to grain $\Theta = 0^{\circ}$.
 - $N'_{m,\perp}$ Main member loaded perpendicular to grain (Θ = 90°); side member loaded parallel to grain (Θ = 0°).
 - $N'_{s,\perp}$ Main member loaded parallel to grain (Θ = 0°); side member loaded perpendicular to grain (Θ = 90°).
 - N'_{\perp} Main member and side member loaded perpendicular to grain Θ = 90°.


Table PB.1.3, Factored Resistances for CLT Panel to Beam Connections in Shear

		CLT Panel & Beam Config					esistance [N]	Minimum
		Loading	Beam Type	Panel Thickness (t)	Fastener Options	Standard Loading K _D =1.0	Short Term Loading K _D =1.15	Spacing in a Row (S_p)
				191	Eco 8 x 300	1660	1910	180
				191	Eco 10 x 300	2450	2820	225
	Ni,			221	Eco 8 x 340	1660	1910	180
	N' _{//}	0		221	Eco 10 x 360	2450	2820	225
				244	Eco 10 x 380	2450	2820	225
				244	SK 12 x 400	3490	4010	270
				191	Eco 8 x 300	1340	1540	180
				101	Eco 10 x 300	1970	2270	225
	N,			221	Eco 8 x 340	1340	1540	180
	N' _{m,} ⊥			22.	Eco 10 x 360	1970	2270	225
				244	Eco 10 x 380	1970	2270	225
7 PLY			D-Fir	244	SK 12 x 400	2800	3220	270
7 F			(0.49)	191	Eco 8 x 300	1270	1460	180
				131	Eco 10 x 300	1710	1970	225
	N,			221	Eco 8 x 340	1320	1520	180
	N' _{s,} ⊥			221	Eco 10 x 360	1930	2220	225
		10		244	Eco 10 x 380	1900	2190	225
				244	SK 12 x 400	2580	2970	270
				191	Eco 8 x 300	1140	1310	180
				101	Eco 10 x 300	1570	1810	225
	N' _⊥			221	Eco 8 x 340	1140	1310	180
	1 4 T			221	Eco 10 x 360	1670	1920	225
				244	Eco 10 x 380	1670	1920	225
				244	SK 12 x 400	2380	2740	270

See notes under Table PB.1.2, page 40.

CLT Floor to Beam Connection

CLT floor panels can also be fastened to supporting timber beams below with partially threaded selftapping screws installed from the top surface of the panel in order to transfer shear and uplift forces.

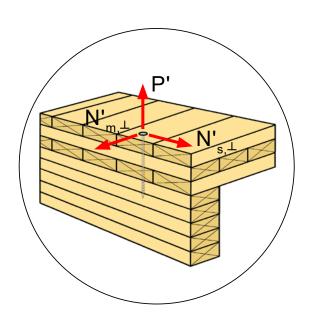


Table PB.3.1, Factored Resistances for CLT Floor to Beam Connection

Table	Table FB.3.1, Factored Resistances for GET Floor to Beam Connection										
CL	T Panel & Beam	Configuration				Factored Re	sistance [N]				
	Beam Type	Panel Thickness (t)		Fastener Options	N' _{m,} _	N' _{s,} ⊥	P' _{eco}	P' _{sk}			
		79		Eco / SK		715					
3 PLY	SPF (0.42)	87	6 x 160	719	683	1320	2170				
	,	105		Eco / SK 6 x 180		687					
		130		Eco / SK 6 x 200		664					
5 PLY	SPF (0.42)	140		Eco / SK 6 x 220	719	711	1320	2170			
4)	, ,	175		Eco / SK 6 x 260		731					

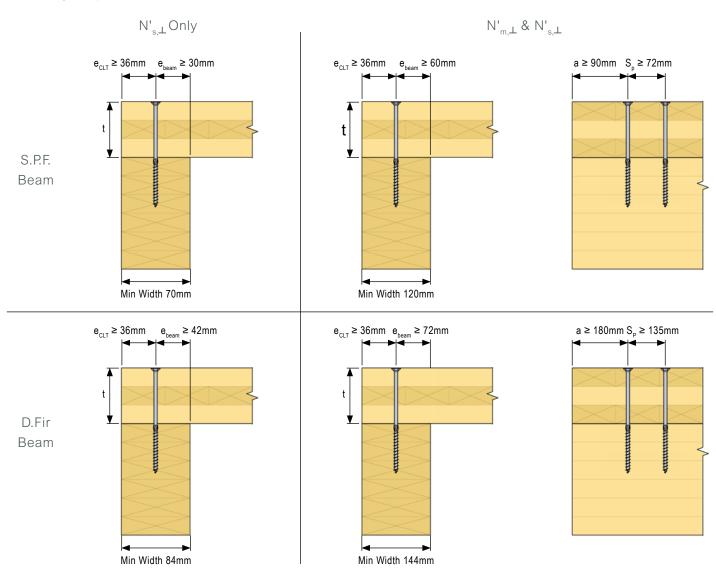

- Factored resistances apply to a single fastener, conforming to the connection geometry and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- 4. Fasterner placement must respect the geometry requirements presented in the adjacent figures (page 43) and the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- Fasteners to be installed at a 90° angle intersecting the shear plane at the interface of the CLT panel and supporting beam.
- 6. Short term loading ($K_D = 1.15$) can be applied to N' $_{m,\perp}$ and N' $_{s,\perp}$.
- 7. $N'_{m,\perp}$ Main member loaded perpendicular to grain ($\Theta = 90^{\circ}$); side member loaded parallel to grain ($\Theta = 0^{\circ}$).
 - $N'_{s,\perp}$ Main member loaded parallel to grain (Θ = 0°); side member loaded perpendicular to grain (Θ = 90°).

Table PB.3.2, Factored Resistances for CLT Floor to Beam Connection

CL	Γ Panel & Beam	Configuration				Factored Re	sistance [N]	
	Beam Type	Panel Thickness (t)		Fastener Options	N' _{m,} ⊥	N' _{s,} ⊥	P' _{eco}	P' _{sk}
		79		Eco / SK		724		
3 PLY	D-Fir (0.49)	87		6 x 160	756	691	1320	2560
.,,	, ,	105	Eco / SK 6 x 180			696		
		130		Eco / SK 6 x 200		672		
5 PLY	D-Fir (0.49)	140		Eco / SK 6 x 220	756	719	1320	2560
4)	, ,,,	175		Eco / SK 6 x 260		742		

See notes under table PB.3.1, page 42.

Geometry Requirements

CLT Panel to Beam Connection with Inclined Screws

Inclined fully threaded screws can be used in place of screws loaded perpendicular to the screw axis for shear connections wherever greater stiffness and higher capacity is required. The use of screw crosses ensures equal capacity in alternating loading directions. Partially threaded screws can be installed in advance of the inclined screws for assembly purposes. The partially threaded screws serve to close the gap between the elements and hold them together tightly until the load transmitting inclined screws are installed.

Factored resistances refer to one screw cross (two fully threaded screws). The shear capacity of assembly screws must not be accounted for.

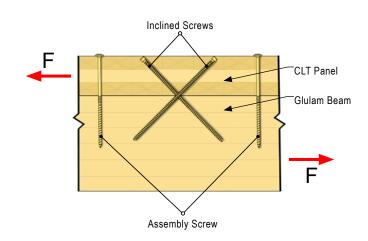
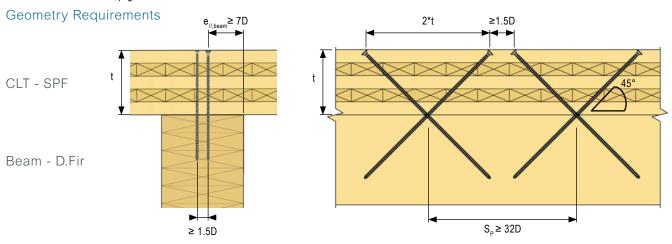


Table PB.2.1, Factored Resistances for CLT Panel to Beam Connection Inclined Screws Crosses

		CLT Panel & Joint Config	uration		Factoria		Resistance v Cross [N]	Minimum Spacing
		Loading	Beam Type	Panel Thickness (t)	Fastener Options	Standard Loading K _D =1.0	Short Term Loading K _D =1.15	in a Row (S _P)
	NI,			79	VG CSK 8 x 220	7,890	9,070	256
			D-Fir	87	VG CSK 8 x 240	8,440	9,710	256
	N' _{//}	(0.48	(0.49)	105	VG CSK 8 x 300	10,410	11,970	256
PLY				105	VG CSK 10 x 300	12,970	14,910	320
3				79	VG CSK 8 x 220	8,290	9,530	256
	NI?		D-Fir	87	VG CSK 8 x 240	9,270	10,660	256
	N' _⊥		(0.49)	105	VG CSK 8 x 300	10,960	12,600	256
				105	VG CSK 10 x 300	13,650	15,700	320


- Factored resistances listed apply to two fasteners installed in a screw cross configuration, conforming to the connection geometry and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- 4. Fasterner placement must respect the geometry requirements presented in the adjacent figures (page 45) and the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- Fasteners are installed at a 45° angle intersecting the shear plane at the interface of the CLT panel and supporting beam.

- 6. The angle between shear plane and fastener axis is 45°.
- 7. The main member is assumed to be a glulam member with G = 0.49.
- Factored Lateral Resistance only apply to parallel loading along the span direction of the dlulam.
- The upper limit of the factored withdrawal resistance may be set by the factored tensile strength of fastener, no further increase allowed.
- N'_{XII} Factored resistance per screw cross with CLT main member loaded along the major span direction.
 - $N'_{\chi\perp}$ Factored resistance per screw cross with CLT main member loaded along the minor span direction.

Table PB.2.2, Factored Resistances for CLT Panel to Beam Connection Inclined Screws Crosses

		CLT Panel & Joint Config	uration		Fastener		Resistance v Cross [N]	Minimum Spacing
		Loading	Beam Type	Panel Thickness (t)	Options	Standard Loading K _D =1.0	Short Term Loading K _D =1.15	in a Row (S _P)
				133	VG Cyl 8 x 380	13,320	15,310	256
	NI,		D-Fir	139	VG Cyl 8 x 380	13,600	15,640	256
	N' _{//}	-	(0.49)	175	VG Cyl 8 x 480	17,320	18,630	256
PLY				175	VG Cyl 10 x 480	21,780	23,420	320
5 P				133	VG Cyl 8 x 380	13,700	15,760	256
	N'⊥		D-Fir (0.49)	139	VG Cyl 8 x 380	14,710	16,910	256
	"			175	VG Cyl 8 x 480	17,590	18,950	256
				175	VG Cyl 10 x 480	22,120	23,810	320
			D-Fir (0.49)		VG Cyl 8 x 530	17,930	19,240	256
				191	VG CSK 10 x 530	22,540	24,290	320
	N',,				VG Cyl 8 x 580	19,240	19,240	256
			(0.40)	221	VG CSK 10 x 650	24,440	24,440	320
7				244	VG CSK 10 x 650	24,440	24,440	320
7 PLY				191	VG Cyl 8 x 530	18,620	19,240	256
			D 5:	191	VG CSK 10 x 530	23,410	24,440	320
	N'⊥		D-Fir (0.49)	221	VG Cyl 8 x 580	19,240	19,240	256
				221	VG CSK 10 x 580	24,440	24,440	320
				244	VG CSK 10 x 650	24,440	24,440	320

See notes under Table PB.2.1, page 44.

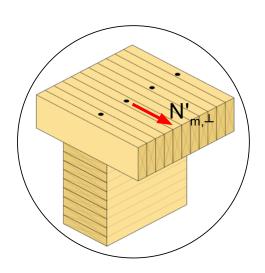
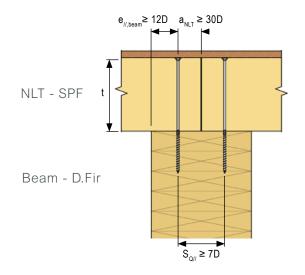
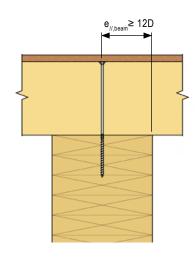

NLT Panel to Beam Connection in Shear

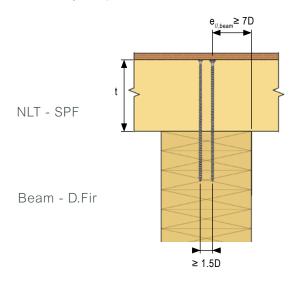
Table PB.4, Factored Resistances for NLT Panel to Beam Connections in Shear

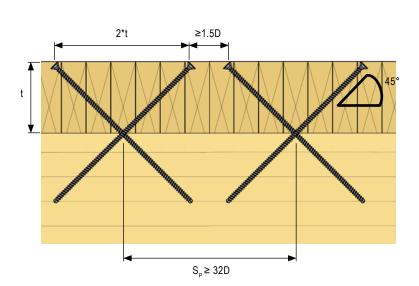

		NLT Panel & Beam Config	guration				Factored Re	esistance [N]	Minimum
	Loading			Panel Thickness (t)		Fastener Options	Standard Loading K _D =1.0	Short Term Loading K _D =1.15	Spacing in a Row (S _P)
				89		Eco 6 x 200			
	N' _{m,⊥}		D-Fir (0.49)	140		Eco 6 x 260	770	890	135
R				185		Eco 6 x 300			
				235		Eco 8 x 360	1360	1560	190
				285		Eco 8 x 400	1300	1360	180


Notes:

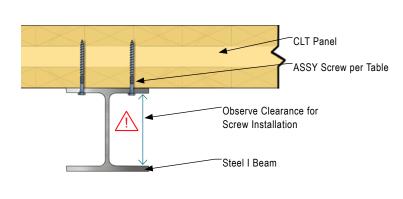
- Factored resistances apply to a single fastener, conforming to the connection geometry and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Fasterner placement must respect the geometry requirements presented in the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- 5. Factored resistances require the fasteners to be installed at a 90° angle intersecting the shear plane at the interface of the NLT panel and supporting beam.
- 6. The angle between force and fastener axis is 90°.
- 7. The main member is assumed as a glulam member with G = 0.49.
- 8. $N'_{m,\perp}$ Main member loaded perpendicular to grain (Θ = 90°); side member loaded parallel to grain (Θ = 0°).
 - $N'_{s\perp}$ Main member loaded parallel to grain (Θ = 0°); side member loaded perpendicular to grain (Θ = 90°).

Geometry Requirements


NLT Panel to Beam Connection with Inclined Screws


Table PB.5, Factored Resistances for NLT Panel to Beam Connections with Inclined Screws Crosses

		NLT Panel & Beam Confiç	guration		Eastonor		Factored F per Screw	Resistance Cross [N]	Minimum	
		Loading	Beam Type	Panel Thickness (t)		Fastener Options	Standard Loading K _D =1.0	Short Term Loading K _D =1.15	Spacing in a Row (S _p)	
				89		VG CSK 8 x 240	9260	10650		
NLT	NI!	← \	D-Fir	140		VG CSK 8 x 360	13560	15600	256	
Z	N' _{//}		(0.49)	185		VG CSK 8 x 430	13990	16090	∠36	
				235		VG CSK 8 x 530	16550	18070		


- Factored resistances listed apply to two fasteners installed in a screw cross configuration, Notes: conforming to the connection geometry and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Fasterner placement must respect the geometry requirements presented in the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- Factored resistances require the fasteners to be installed at a 45° angle intersecting the shear plane at the interface of the NLT panel and supporting beam.
- 6. The angle between force and fastener axis is 45°.
- 7. The main member is assumed as a glulam member with G = 0.49.
- Factored Lateral Resistance only apply to parallel loading along the span direction of the glulam and with the screws installed perpendicular-to-grain in the NLT.
- The upper limit of the factored withdrawal resistance may be set by the factored tensile strength of fastener, no further increase allowed.

Geometry Requirements

CLT Panel to Steel Beam Connection

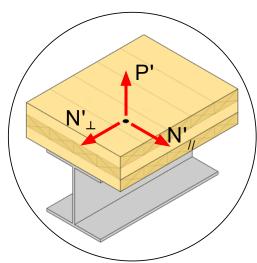


Table PB.6.1, Factored Resistances for CLT Steel Beam Connections

	C	CLT Panel & Steel Beam C	onfiguration				Factored Re	sistance [N]
	Loading Panel Thickness (t) Steel Thickness					Fastener Options	N'	Ρ'
	N',,		87	4.76				
				to	6.35		Kombi 8 x 80	2203
PLY			105	12.7				2615
3 P			87	4.76				2015
	N' _⊥		to	6.35		Kombi 8 x 80	1545	
			105	12.7				

- Factored resistances apply to a single fastener, conforming to the connection geometry
 and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Connector placement must respect the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- Factored resistances require the fasteners to be installed at a 90° angle intersecting the shear plane at the interface of the CLT panel and supporting steel beam.

- 6. The angle between force and fastener axis is 90°.
- The side member is assumed as ASTM A36 grade steel or higher. In accordance with CSA O86 2019, Clause 12.6.5 is used to find the embedment strength with steel side plate.
- Steel members must be pre-drilled prior to the installation of the fasteners. The designer must assure that all possible stress limits in the steel and wood are not exceeded.
- 9. N'_{II} Main member loaded parallel to grain. ($\Theta = 0^{\circ}$)
 - N'_{\perp} Main member loaded perpendicular to grain. (Θ = 90°)
 - P' Screws loaded in withdrawal.

Table W.5.2, Steel Plate Pre-Drilling Diameter

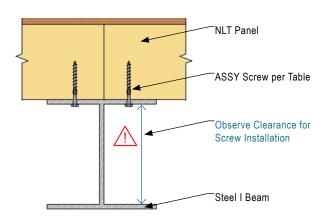

Screw Nominal Diameter	Steel Plate Hole Diameter
in. [mm]	in. [mm]
1/4" [6]	9/32" [7]
5/16" [8]	3/8" [9]
3/8" [10]	7/16" [11]
1/2" [12]	17/32" [13]

Table PB.6.2, Factored Resistances for CLT Steel Side Plate Connections

	C	CLT Panel & Steel Beam C	onfiguration			Factored R	esistance [N]
		Loading	Panel Thickness (t)	Steel Thickness	Fastener Options	N'	P [,]
					Kombi 8 x 80	2203	2615
				4.70	Kombi 10 x 120	3247	5309
				4.76	Kombi 12x 120	4000	0007
					Kombi 12 x 140	4622	6067
			139		Kombi 8 x 80	2203	2615
	N',,	or	to	6.25	Kombi 10 x 120	3247	5309
			244	6.35	Kombi 12x 120	4000	0007
					Kombi 12 x 140	4622	6067
					Kombi 10 x 120	3247	5309
ore				12.7	Kombi 12x 120	4622	0007
r Mo					Kombi 12 x 140	4022	6067
PLY or More					Kombi 8 x 80	1545	2615
5 P				4.76	Kombi 10 x 120	2276	5309
				4.70	Kombi 12x 120	2044	6067
					Kombi 12 x 140	3241	6067
			139		Kombi 8 x 80	1545	2615
	N'⊥	or	to	6.35	Kombi 10 x 120	2276	5309
			244	0.33	Kombi 12x 120	2241	6067
		× × × ×			Kombi 12 x 140	3241	6067
					Kombi 10 x 120	2276	5309
				12.7	Kombi 12x 120	2044	6067
				Kombi 12 x 140	3241	6067	

See notes under Table PB.6.1, page 48.

NLT Panel to Steel Beam Connection

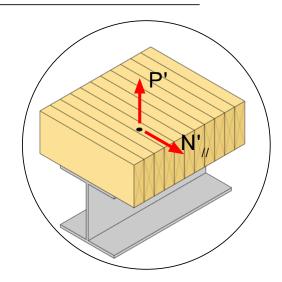


Table PB.7.1, Factored Resistances for NLT to Steel Beam Connections

N	LT Panel	& Steel Beam C	onfiguration		Factored Resistance [N]			
Lo	ading	Panel Thickness (t)	Steel Thickness	Fastener Options				
_		89	4.76					
	N',,	to	6.35	Kombi 8 x 80	2320	2560		
	"	139	12.7					

- Factored resistances apply to a single fastener, conforming to the connection geometry and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Connector placement must respect the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- Factored resistances require the fasteners to be installed at a 90° angle intersecting the shear plane at the interface of the NLT panel and supporting steel beam.

- 6. The angle between force and fastener axis is 90°.
- Steel members must be pre-drilled prior to the installation of the fasteners. The designer must assure that all possible stress limits in the steel and wood are not exceeded.
- The side member is assumed as ASTM A36 grade steel or higher. In accordance with CSA O86 2019, Clause 12.6.5 is used to find the embedment strength with steel side plate.
- Steel members must be pre-drilled prior to the installation of the fasteners. The designer must assure that all possible stress limits in the steel and wood are not exceeded.
- 10. N'_{\parallel} Main member loaded parallel to grain. ($\Theta = 0^{\circ}$)
 - N'_{\perp} Main member loaded perpendicular to grain. (Θ = 90°)
 - P' Screws loaded in withdrawal.

Table PB.7.3, Steel Plate Pre-Drilling Hole Size Diameter

Screw Nominal Diameter	Steel Plate Hole Diameter
in. [mm]	in. [mm]
1/4" [6]	9/32" [7]
5/16" [8]	3/8" [9]
3/8" [10]	7/16" [11]
1/2" [12]	17/32" [13]

Table PB.7.2, Factored Resistances for NLT to Steel Beam Connections

N	NLT Panel & Steel Beam Configuration				Factored Re	esistance [N]
Lo	Panel Steel Thickness (t) Thickness		Fastener Options	N'	Þ,	
			4.76	Kombi 8 x 80	2320	2560
		139	4.76	Kombi 10 x 120	3420	5320
R	N',,	to	6.35	Kombi 8 x 80	2320	2560
		285	0.35	Kombi 10 x 120	3420	5320
			12.7	Kombi 10 x 120	3420	5320

- Factored resistances apply to a single fastener, conforming to the connection geometry
 and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- 3. All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Connector placement must respect the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- 5. Factored resistances require the fasteners to be installed at a 90° angle intersecting the shear plane at the interface of the NLT panel and supporting steel beam.

- 6. The angle between force and fastener axis is 90°.
- Steel members must be pre-drilled prior to the installation of the fasteners. The designer must assure that all possible stress limits in the steel and wood are not exceeded.
- The side member is assumed as ASTM A36 grade steel or higher. In accordance with CSA O86 2019, Clause 12.6.5 is used to find the embedment strength with steel side plate.
- Steel members must be pre-drilled prior to the installation of the fasteners. The designer must assure that all possible stress limits in the steel and wood are not exceeded.
- 10. N'_{II} Main member loaded parallel to grain. ($\Theta = 0^{\circ}$)
 - N'_⊥ Main member loaded perpendicular to grain. (⊖ = 90°)
 - P' Screws loaded in withdrawal.

Post to Beam Connections

Beam Hanger Systems

The beam hanger systems are pre-engineered solutions for easily connecting post to beam or girder to beam members in mass timber structures. High loads are supported with simple and fast installation, making the beam hanger systems one of the most cost-effective mass-timber connecting solutions on the market.

GIGANT System

RICON S VS System

MEGANT System

Engineered for Mass Timber

Optimizing post and beam framing systems

Easy to Install

Simple drop-in assembly accelerates the construction process

Versatile

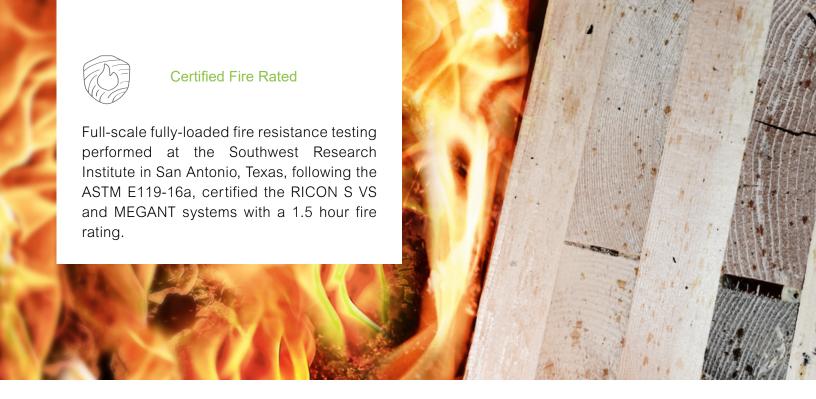
Can be installed on steel, concrete and wood

Certified Fire Rated

Full scale fully loaded fire tested in America

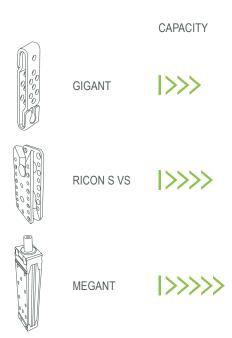
Inter-Story Drift Performance Tested

Used in seismic zones


Moisture Content Variation Tested

Dry-Wet-Dry & Wet-Wet-dry configurations tested

CERTIFICATIONS


ISO 50001 for the Fasteners

Pre-designed

Our detailed Beam Hanger Design Guide provides tabulated design values and precise installation instructions for each of our Beam Hanger Systems, reducing the engineering & detailing time needed to successfully complete a project.

Notes: For more information please consult our **Beam Hanger Design Guide**.

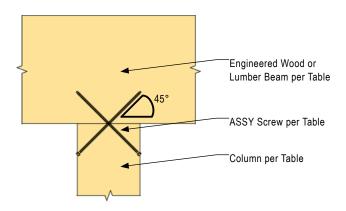
MTC Beam Hanger Design Guide contains tabulated design values, detailed explanations for fire rating and skewed connections, installation instruction and the full range of our products.

Easy to Install

Beam Hanger Systems can be pre-installed in a controlled shop environment, offering the following benefits:

- Accelerated construction time
- Fewer power tools
- Reduced on-site labor
- Reduces risk of injury and error

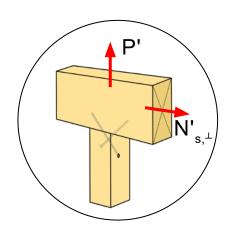
High Architectural Value

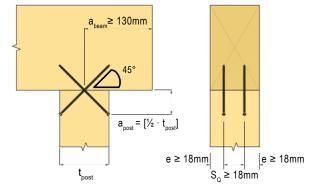

The standardized and complete beam hanger system, includes detailed routing procedures, allowing for a repetitive and precise installation while offering an architecturally appealing clean wood appearance.

Post to Beam Connection - Bearing

As an alternative to pre-engineered steel connectors, both fully threaded and partially threaded self-tapping screws can connect beams to posts in bearing connections. Post to beam connections are capable of resisting longitudinal and transverse lateral loads, as

well as uplift forces. Either for temporary or permanent work, self-tapping screws are an efficient alternative for post to beam connections and can easily be concealed if required.

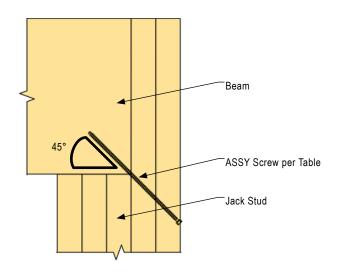



Table PT.1, Factored Resistances for Beam to Post Connection (Bearing)

Beam t	o Post Config	uration			
Loading	Beam Type	Colum Size		Fastener Options	Factored Resistance per Screw Cross [N]
				VG Cyl 6 x 160	3070
	SPF	140 x 140		VG Cyl 6 x 180	4180
	Sawn Lumber & Glulam			VG Cyl 6 x 200	5300
	(0.42)	184 v 184		VG Cyl 6 x 180	2450
		184 x 184		VG Cyl 6 x 200	3560
		140 x 140		VG Cyl 6 x 160	4000
N' _{s,} ⊥	5.5			VG Cyl 6 x 180	5450
or	D-Fir (0.49)			VG Cyl 6 x 200	5520
P'		184 x 184		VG Cyl 6 x 180	3190
		104 X 104		VG Cyl 6 x 200	4650
				VG Cyl 6 x 160	2330
	5145	140 x 140		VG Cyl 6 x 180	3180
	(0.50)			VG Cyl 6 x 200	4030
	(0.30)	184 v 184		VG Cyl 6 x 180	1860
		184 x 184		VG Cyl 6 x 200	2710

Notes

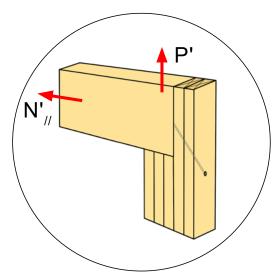
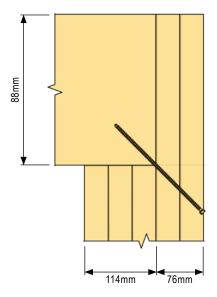
- Factored resistances listed apply to two fasteners installed in a screw cross configuration, conforming to the connection geometry and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Fasterner placement must respect the geometry requirements presented in the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- 5. Fasteners are installed in a screw cross configuration, intersecting the shear plane at the interface of the post and the beam.
- 6. The angle between force and fastener axis is 45°.
- Engineered Wood Products (EWP) must have a relative density equivalent to 0.50 as per their respective CCMC Evaluation Report for the loading condition.

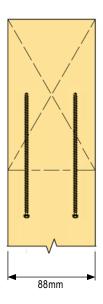

Geometry Requirements

Beam to Jack Stud Connection

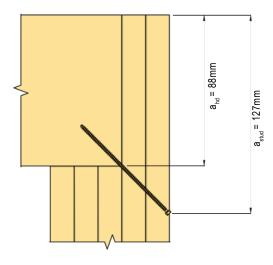
Fully threaded self-tapping screws installed at a 45° angle are an efficient and simple way to connect headers to jack and king studs. Single or double screws can be installed to resist uplift forces as well

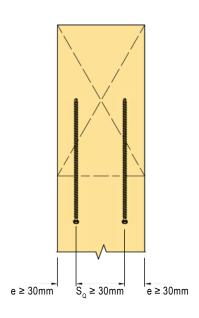
as lateral loads along the length of the header. A comparable nailed or premanufactured connection would require a considerable additional amount of work in order to obtain the same capacities.

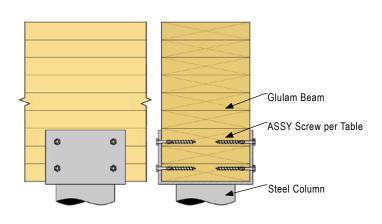




Table PT.2, Factored Resistances for Beam to Jack Stud Connection

Beam to	Jack Stud Co	nfiguration			
Loading	Jack Stud	Beam Type		Fastener Options	Factored Resistance [N]
		SPF		VG Cyl 6 x 160	1300
		Sawn Lumber & Glulam		VG Cyl 6 x 180	1850
N',,		(0.42)		VG Cyl 6 x 200	2410
or	Double 2"			VG Cyl 6 x 160	1690
	Lumber	D-Fir (0.49)		VG Cyl 6 x 180	2420
P'		(31.13)		VG Cyl 6 x 200	3000
				VG Cyl 6 x 160	990
		(0.50)		VG Cyl 6 x 180	1410
		(0.50)		VG Cyl 6 x 200	1840


- Factored resistances apply to a single fastener, conforming to the connection geometry and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Fasterner placement must respect the geometry requirements presented in the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- 5. Fasteners to be installed at a 45° angle intersecting the shear plane at the interface of the post and the beam.
- Sawn Lumber studs with multiple plies must be independently fasten to each other as per the applicable design codes or standards.
- Engineered Wood Products (EWP) must have a relative density equivalent to 0.50 as per their respective CCMC Evaluation Report for the loading condition.


Minimum Timber Requirements



Geometry Requirements

Wood Beam to Steel Column - Shear Screws

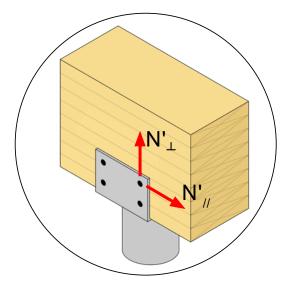


Table PT.3, Factored Resistances for Steel Column

	& Steel figuration			Factored Resistance				
Beam	Steel Thickness		Fastener Options	[N]				
Туре	[mm]			N' _{//}	N'⊥			
			Kombi 8 x 60		1390			
	6.35		Kombi 8 x 80		1540			
			Kombi 8 x 100	2320	1540			
SPF			Kombi 8 x 60	2320	1190			
	12.7		Kombi 8 x 80		1540			
(0.42)			Kombi 8 x 100					
	19.1	Kombi 8 x 60 19.1 Kombi 8 x 80		Kombi 8 x 60			2270	1000
				Kombi 8 x 80	2320	1540		
			Kombi 8 x 100	2320	1540			
	6.35	Kombi 8 x 60			1660			
			Kombi 8 x 80		1680			
		Kombi 8 x 100			1000			
EWP			Kombi 8 x 60		1420			
(0.50)	12.7		Kombi 8 x 80	2530	1680			
(0.50)			Kombi 8 x 100		1000			
			Kombi 8 x 60		1190			
	19.1		Kombi 8 x 80		1680			
		Kombi 8 x 100			1000			

- Factored resistances apply to a single fastener, conforming to the connection geometry and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Connector placement must respect the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- Factored resistances require the fasteners to be installed at a 90° angle intersecting the shear plane at the interface of the glulam beam and steel plate.
- Steel members must be pre-drilled prior to the installation of the fasteners.The designer must assure that all possible stress limits in the steel and wood are not exceeded.
- The side member must be ASTM A36 grade steel or higher. In accordance with CSA O86 2019, Clause 12.6.5 is used to find the embedment strength with steel side plate.
- 8. N'_{II} Main member loaded parallel to grain (Θ = 0°).
 - N'_⊥ Main member loaded perpendicular to grain (⊖ = 90°).

Wood Beam to Steel Column - Inclined Screws

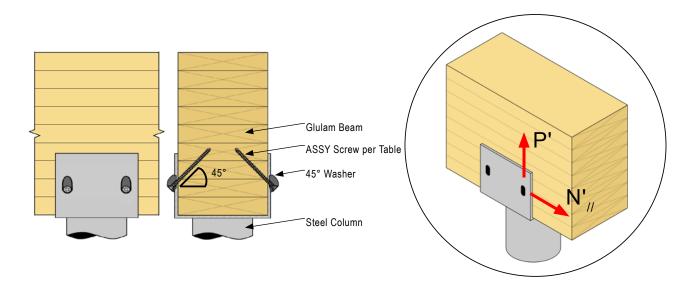
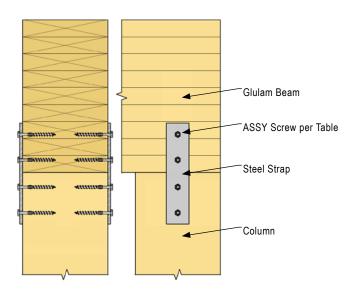



Table PT.4.1, Factored Resistances for Steel Column with Inclined Screws

	& Steel nfiguration	Foots		Resistance	
Beam	Steel Thickness	Fastener Options	[N]		
Type	[mm]		P'	N' _{//}	
		VG CSK 8 x 120	3920		
	6.35	VG CSK 8 x 140	4780		
		VG CSK 8 x 160	5640		
SPF		VG CSK 8 x 120	3700		
	9.5	VG CSK 8 x 140	4570	1730	
(0.42)		VG CSK 8 x 160	5430		
	14	VG CSK 8 x 120	3430		
		VG CSK 8 x 140	4290		
		VG CSK 8 x 160	5150		
	6.35	VG CSK 8 x 120	3020		
		VG CSK 8 x 140	3680		
		VG CSK 8 x 160	4350		
EM/D		VG CSK 8 x 120	2850		
EWP	9.5	VG CSK 8 x 140	3520	1890	
(0.50)		VG CSK 8 x 160	4180		
		VG CSK 8 x 120	2640		
	14	VG CSK 8 x 140	3310		
		VG CSK 8 x 160	3970		

- Factored resistances apply to a single fastener, conforming to the connection geometry and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Connector placement must respect the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- Factored resistances require the fasteners to be installed at a 45° angle intersecting the shear plane at the interface of the glulam beam and steel plate.
- Steel members must be pre-drilled prior to the installation of the fasteners.
 The designer must assure that all possible stress limits in the steel and wood are not exceeded.
- The side member must be ASTM A36 grade steel or higher. In accordance with CSA O86 2019, Clause 12.6.5 is used to find the embedment strength with steel side plate.
- For more information on how to predrill a steel plate with MTC Solutions 45° washer, please refer to the detailing section of this guide, page 104.
- 9. N'_{\parallel} Main member loaded parallel to grain ($\Theta = 0^{\circ}$).

Beam Bearing Straps - Shear Screws

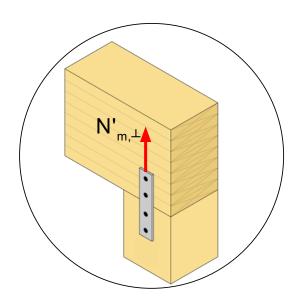
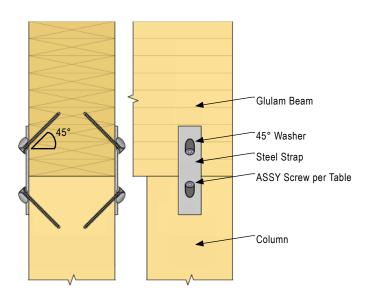



Table PT.5, Factored Resistances for Beam Bearing Straps

	& Steel nfiguration		Factored Resistance				
Beam	Steel Thickness	Fastener Options	[N]				
Туре	[mm]		N' _{m,} ⊥				
		Kombi 8 x 60	1390				
	6.35	Kombi 8 x 80	1540				
		Kombi 8 x 100	1340				
SPF		Kombi 8 x 60	1190				
	12.7	Kombi 8 x 80	1540				
(0.42)		Kombi 8 x 100	1540				
	19.1	Kombi 8 x 60	1000				
		19.1	Kombi 8 x 80	1540			
		Kombi 8 x 100	1540				
	6.35	Kombi 8 x 60	1660				
		6.35	6.35	6.35	6.35	6.35	Kombi 8 x 80
		Kombi 8 x 100	1000				
EWP		Kombi 8 x 60	1420				
	12.7	Kombi 8 x 80	1680				
(0.50)		Kombi 8 x 100	1000				
		Kombi 8 x 60	1190				
	19.1	Kombi 8 x 80	1680				
		Kombi 8 x 100	1000				

- Factored resistances apply to a single fastener, conforming to the connection geometry and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Connector placement must respect the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- Factored resistances require the fasteners to be installed at a 90° angle intersecting the shear plane at the interface of the glulam beam and steel plate.
- Steel members must be pre-drilled prior to the installation of the fasteners.
 The designer must assure that all possible stress limits in the steel and wood are not exceeded.
- The side member must be ASTM A36 grade steel or higher. In accordance with CSA 086 2019, Clause 12.6.5 is used to find the embedment strength with steel side plate.
- N'_{m,⊥} Main member loaded perpendicular to grain (Θ = 90°); side member loaded parallel to grain (Θ = 0°).

Beam Bearing Straps - Inclined Screws

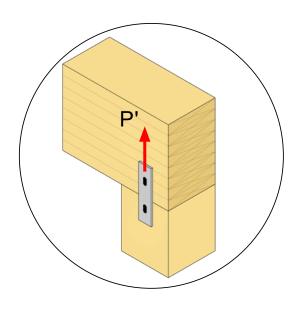
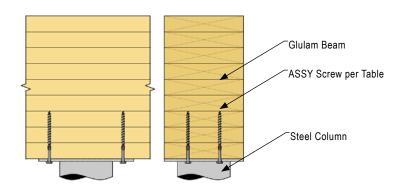



Table PT.6.1, Factored Resistances for Beam Bearing Straps with Inclined Screws

	Wood & Steel am Configuration			Factored Resistance
Beam	Steel Thickness		Fastener Options with 45° Washers	[N]
Туре	[mm]			P'
			VG CSK 8 x 120	3920
	6.35		VG CSK 8 x 140	4780
			VG CSK 8 x 160	5640
CDE			VG CSK 8 x 120	3700
SPF	9.5		VG CSK 8 x 140	4570
(0.42)			VG CSK 8 x 160	5430
			VG CSK 8 x 120	3430
	14		VG CSK 8 x 140	4290
			VG CSK 8 x 160	5150
			VG CSK 8 x 120	3020
	6.35		VG CSK 8 x 140	3680
		VG CSK 8 x 160		4350
			VG CSK 8 x 120	2850
EWP	9.5		VG CSK 8 x 140	3520
(0.50)			VG CSK 8 x 160	4180
			VG CSK 8 x 120	2640
	14		VG CSK 8 x 140	3310
			VG CSK 8 x 160	3970

- Factored resistances apply to a single fastener, conforming to the connection geometry and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Connector placement must respect the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- Factored resistances require the fasteners to be installed at a 45° angle intersecting the shear plane at the interface of the glulam beam and steel plate.
- Steel members must be pre-drilled prior to the installation of the fasteners.
 The designer must assure that all possible stress limits in the steel and wood are not exceeded.
- The side member must be ASTM A36 grade steel or higher. In accordance with CSA O86 2019, Clause 12.6.5 is used to find the embedment strength with steel side plate.
- For more information on how to predrill a steel plate with MTC Solutions 45° washer, please refer to the detailing section of this guide, page 104.

Wood Beam to Steel Column - Bottom Plate

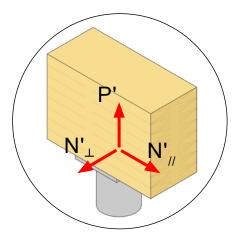
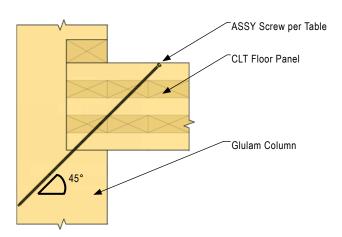



Table PT.7, Factored Resistances for Steel Column - Bottom Plate

	& Steel nfiguration		Fastener	Factored Resistanc		
Beam Type	Steel Thickness [mm]		Options	N'"	P'	
			Kombi 8 x 60	//	N ′ _⊥ 1390	2070
	635		Kombi 8 x 80			2680
			Kombi 8 x 100		1540	3290
CDE			Kombi 8 x 60	2320	1190	1670
SPF	19.1		Kombi 8 x 80		1540	2280
(0.42)			Kombi 8 x 100			2890
			Kombi 8 x 60	2270	1000	1280
		19.1 Kombi 8 x 80 Kombi 8 x 100		2320	1540	1890
					1540	2500
	Kombi 8 x 60		Kombi 8 x 60		1660	1600
	6.35	6.35 Kombi 8 x 80			1680	2070
			Kombi 8 x 100		1000	2540
EWP			Kombi 8 x 60		1420	1280
(0.50)	12.7		Kombi 8 x 80	2530	1680	1750
(0.50)			Kombi 8 x 100		1680	2220
			Kombi 8 x 60		1190	990
	19.1	19.1 Kombi 8 x 80			1680	1460
	Kombi 8 x 100				1000	1930

- Factored resistances apply to a single fastener, conforming to the connection geometry and the loading configuration described for that design value.
- 2. Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Connector placement must respect the minimum spacing, edge,
 end distance requirements for ASSY screws, as specified in the
 Detailing Section of this guide, pages 92 to 104.
- Factored resistances require the fasteners to be installed at a 90° angle intersecting the shear plane at the interface of the glulam beam and steel plate.
- Steel members must be pre-drilled prior to the installation of the fasteners. The designer must assure that all possible stress limits in the steel and wood are not exceeded.
- 7. The side member must be ASTM A36 grade steel or higher. In accordance with CSA O86 2019, Clause 12.6.5 is used to find the embedment strength with steel side plate.
- 8. N'_{II} Main member loaded parallel to grain ($\Theta = 0^{\circ}$).
 - N'_{\perp} Main member loaded perpendicular to grain ($\Theta = 90^{\circ}$).

Housed CLT Floor Uplift Connections

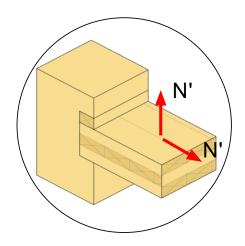
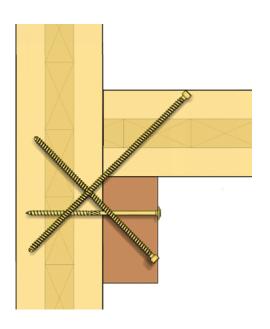
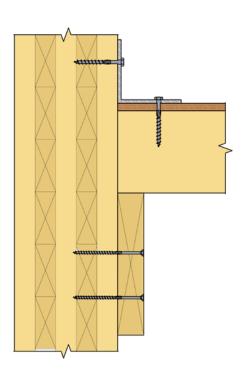
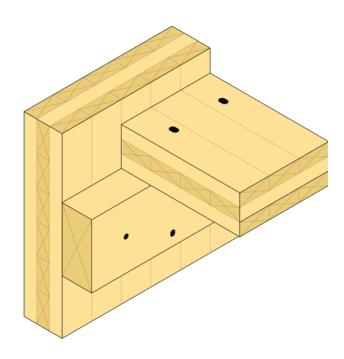


Table PT.8, Factored Resistances for Housed CLT Floor Uplift Connections; 45° Inclined Screws

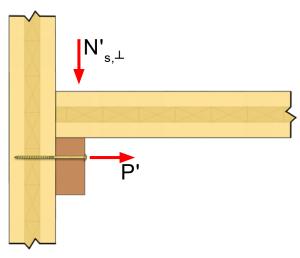
Pa	anel Con	figuration		Factored Re	Factored Resistance [N]			
Lo	ading	Panel Thickness (t)	Fastener Options	Standard Loading K _D =1.0	Short Term Loading K _D =1.15			
		79	VG CSK 8 x 200	3,010	3,460			
	N'"	87	VG CSK 8 x 220	3,290	3,780			
Ľ		105	VG CSK 8 x 280	4,720	5,420			
3 PLY		79	VG CSK 8 x 200	3,010	3,460			
	N' _⊥	87	VG CSK 8 x 220	3,290	3,780			
		105	VG CSK 8 x 280	4,720	5,420			
	NI,	139	VG Cyl 8 x 360	5,790	6,660			
Ľ	N' _{//}	175	VG CSK 10 x 430	8,130	9,350			
5 PLY	NI,	139	VG Cyl 8 x 360	5,790	6,660			
	N' _⊥	175	VG CSK 10 x 430	8,130	9,350			
		191	VG CSK 10x 480	9,220	10,600			
	N'"	220	VG CSK 10x 580	12,390	40.500			
LΥ		245	VG CSK 10x 650	13,580	- 13,580			
7 PLY		191	VG CSK 10x 480	9,220	10,600			
	N' _⊥	220	VG CSK 10x 580	12,390	12 590			
		245	VG CSK 10x 650	13,580	13,580			


- Factored resistances apply to a single fastener, conforming to the connection geometry and the loading configuration described for that design value.
- 2. Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Connector placement must respect the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- Factored resistances require the fasteners to be installed at a
 45° angle intersecting the shear plane at the interface of CLT
 floor, wall and ledger. Fasteners must penetrate the whole
 thickness of the CLT floor panel (t).
- 6. The angle between force and fastener axis is 45°.
- Factored Lateral Resistance may be applied to uplift and horizontal tension loading towards the panel joint.
- 8. Adjustment for end grain factor (J_e =0.67) in CLT may be neglected as corresponding withdrawal resistances are already multiplied by the angle to grain reduction factor R α . (Clause 12.6.6; CSA O86-2019)
- 9. N'_{II} Main member loaded along the major CLT span direction; side member loaded along the major CLT span direction.
 - $\rm N_{\perp}^{\prime}$ Main member loaded along the major CLT span direction; side member loaded along the minor CLT span direction.


Ledger Connections


A typical detail used for balloon framing is the structural ledger. Most ledgers for construction with CLT are made from engineered wood products such as LVL, PSL, OSL and LSL. Steel ledgers are also an option. For most applications, connections will exhibit perpendicular-to-grain loading in the side member while parallel-to-grain loading in the CLT wall or main member. Materials typically show different

specific gravities, which has to be considered in design. Connections with fasteners acting in shear are typically ductile and show lower capacities than fasteners installed at an angle.


For steel angle connections, see the Steel to Wood Connections Section.

CLT Ledger Connection - 90° Shear Screws Only

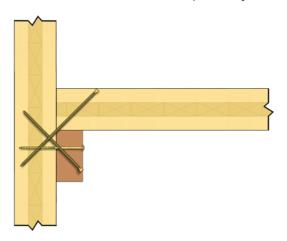
90° Shear Screws Only

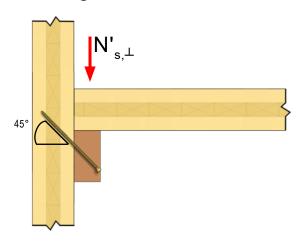
Table LG.1.1, Factored Resistances for Wall to Ledger Connections; 90° Shear Screws Only

		CLT Panel & Ledger Con			Factored F	Resistance			
		Loadina	Ledger Panel			Fastener Options	[N]		
		Loading	Thickness	Thickness (t)		•	N'	Ρ'	
.Υ		ПЛМ -	44	≥ 79		Eco 6 x 120	600	2,170	
7 PLY		s, [⊥]		89	≥ 130		Eco 8 x 220	1,330	3,360
to	N' _{s,} ⊥			69	≥ 130		Eco 10 x 220	1,900	3 000
PLY			422	> 420		Eco 10 x 260	2,140	3,990	
3			133	≥ 130		SK 12 x 260	2,580	8,850	

- 1. Factored resistances apply to a single fastener, conforming to the connection geometry and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Connector placement must respect the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- 5. Factored resistances require the fasteners to be installed at a 90° angle intersecting the shear plane at the interface of EWP and CLT.
- 6. The angle between force and fastener axis is 90°.
- The side member, assumed as Engineered Wood Products (EWP), must have a relative density equivalent to 0.50 as per their respective CCMC Evaluation Report for the loading condition.
- 3. $N'_{s\perp}$ Main member loaded parallel to grain (Θ = 0°); side member loaded perpendicular to grain (Θ = 90°).

Complete CLT Ledger Connection


An option for connecting the ledger to the CLT wall element is through the use of inclined fully threaded screws. Connection strength and stiffness is assumed to come entirely from the inclined screws.


Shear screws installed at 90° angle are used during installation to ensure proper placement and tight connection between side and main member, and to

provide ductility to this critical connection. The shear screws can also reduce the eccentricity created by the inclined screws.

For design purposes, capacities of shear and inclined fasteners may not be combined, as both systems have different inherent stiffnesses.

Part.a - Downward Capacity of Complete Ledger Connection

Complete Ledger Connection

45° Inclined Screws

Table LG.2.1, Factored Resistances for CLT Wall to Ledger Connections; 45° Inclined Screws Only

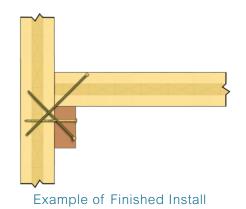
		CLT Panel & Ledge					
		Loading	Ledger Thickness (t)		Fastener Options	Factored Resistance [N]	
PLY	NI'		44	≥ 79	VG CSK 8 x 160	2,089	
3 F	N _{s,} ⊥	N' s,⊥ 44	44	≥ 105	VG CSK 8 x 180	2,009	

- Factored resistances apply to a single fastener, conforming to the connection geometry and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Connector placement must respect the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- 5. Factored resistances require the fasteners to be installed at a 45° angle intersecting the

- shear plane at the interface of EWP and CLT.
- 6. The angle between force and fastener axis is 45°.
- The side member, assumed as Engineered Wood Products (EWP), must have a relative density equivalent to 0.50 as per their respective CCMC Evaluation Report for the loading condition
- 8. Factored Lateral Resistance only apply to parallel (gravity shear) loading.
- Due to stiffness differences, shear screws may not be assumed to take any load. They are only there to facilitate installation and insure a tight fit panel joint.
- N'_{s⊥} Main member loaded along the major CLT span direction; side member loaded perpendicular-to-grain.

Table LG.2.2, Factored Resistances for CLT Wall to Ledger Connections; 45° Inclined Screws Only

CLT Panel & Ledger Configuration								
Loading			Ledger Thickness	Panel Thickness (t)		Fastener Options	Factored Resistance	
	N' _{s,} ⊥		44	≥ 131		VG CSK 8 x 160	2,089	
≻		s, [⊥]		≥ 175		VG CSK 8 x 180		
& 5 PLY			89	≥ 131		VG CSK 8 x 280	4,178	
7 PLY 8			133	≥ 131		VG cyl 8 x 360	5,799	
				≥ 175		VG cyl 8 x 360	5,825	
				≥ 191		VG cyl 8 x 380	6,267	


- Factored resistances apply to a single fastener, conforming to the connection geometry
 and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- 3. All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Connector placement must respect the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- 5. Factored resistances require the fasteners to be installed at a 45° angle intersecting the

- shear plane at the interface of EWP and CLT.
- 6. The angle between force and fastener axis is 45°.
- The side member, assumed as Engineered Wood Products (EWP), must have a relative density equivalent to 0.50 as per their respective CCMC Evaluation Report for the loading condition.
- 8. Factored Lateral Resistance only apply to parallel (gravity shear) loading.
- Due to stiffness differences, shear screws may not be assumed to take any load. They are
 only there to facilitate installation and insure a tight fit panel joint.
- 10. $N'_{s\perp}$ Main member loaded along the major CLT span direction; side member loaded perpendicular-to-grain.

Part.b - Uplift Capacity of Complete Ledger Connection

In order to secure floor panels resting on a ledger, toe screws are usually used to prevent uplift or lateral movement during construction or throughout the lifetime of a building. When using fully threaded self-tapping fasteners, capacities in both horizontal and

vertical directions can be determined with the axial resistance of the fastener. Toe screws are typically installed at a 45° angle. If any tolerance gaps between the CLT wall and floor panel are present, factored resistances shall be reduced accordingly.

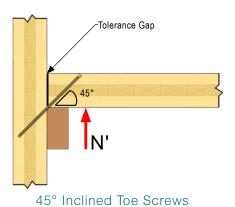


Table LG.3.1, Factored Resistances for CLT Wall to Ledger Connections; 45° Inclined Toe Screws

	CLT	Panel & Ledger Configurat			Factored Resistance [N]			
Loading			Panel Thickness (t)	Fastener Options		Standard Loading [K _D =1.0]	Short Term Loading [K _D =1.15]	
	N' _∥ N' _⊥	1	79		VG CSK 8 x 200	2,910	3,350	
3 PLY			87		VG CSK 8 x 220	3,060	3,520	
		105			VG CSK 8 x 280	4,340	4,990	

- Factored resistances apply to a single fastener, conforming to the connection geometry and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- 3. All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Connector placement must respect the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- Factored resistances require the fasteners to be installed at a 45° angle intersecting the shear plane at the interface of CLT floor and wall.
- The angle between force and fastener axis is 45°.

- Factored Lateral Resistance may be applied to uplift and horizontal tension loading towards the panel joint.
- 8. Adjustment for end grain factor (J_E =0.67) in CLT may be neglected as corresponding withdrawal resistances are already multiplied by the angle to grain reduction factor R α . (Clause 12.6.6; CSA O86-2019)
- The upper limit of the adjusted withdrawal resistance may be set by the allowable fastener tensile strength, no further increase allowed.
- When tolerance gaps are present between the CLT wall and floor panel, the factored resistances shall be reduced accordingly.
- 11. N'_{II} Main member loaded along the major CLT span direction; side member loaded along the major CLT span direction.
 - $\rm N'_{\perp}$ $\,$ Main member loaded along the minor CLT span direction; side member loaded along the major CLT span direction.

Table LG.3.2, Factored Resistances for CLT Wall to Ledger Connections; Uplift 45° Inclined Screws Only

	CLT	Panel & Ledger Configurat	<u> </u>	Factored Ro	Factored Resistance [N]			
		Loading	Panel Thickness (t)	Fastener Options	Standard Loading [K _D =1.0]	Short Term Loading [K _D =1.15]		
'LY	N' _{//}	1	139	VG Cyl 8 x 360	5,380	6,190		
5 PLY	N' _⊥	1	175	VG CSK 10 x 430	7,630	8,770		
			191	VG CSK 10 x 480		9,950		
7 PLY	N' _{//}		220	VG CSK 10 x 580		13,160		
		245		VG CSK 10 x 650		15,000		

- Factored resistances apply to a single fastener, conforming to the connection geometry
 and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Connector placement must respect the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104
- Factored resistances require the fasteners to be installed at a 45° angle intersecting the shear plane at the interface of CLT floor and wall.
- The angle between force and fastener axis is 45°.

- Factored Lateral Resistance may be applied to uplift and horizontal tension loading towards the panel joint.
- 8. Adjustment for end grain factor (J_E =0.67) in CLT may be neglected as corresponding withdrawal resistances are already multiplied by the angle to grain reduction factor R α . (Clause 12.6.6; CSA O86-2019)
- The upper limit of the adjusted withdrawal resistance may be set by the allowable fastener tensile strength, no further increase allowed.
- When tolerance gaps are present between the CLT wall and floor panel, the factored resistances shall be reduced accordingly.
- N'_{II} Main member loaded along the major CLT span direction; side member loaded along the major CLT span direction.
 - N'_{\perp} Main member loaded along the minor CLT span direction; side member loaded along the major CLT span direction.

Ledger Board to Rim Joist Connection

Single and double ledger boards can be fastened to floor rim joists through structural sheathing with partially threaded self-tapping screws.

The connection presented below can be easily implement for both new construction and additions to existing structures.

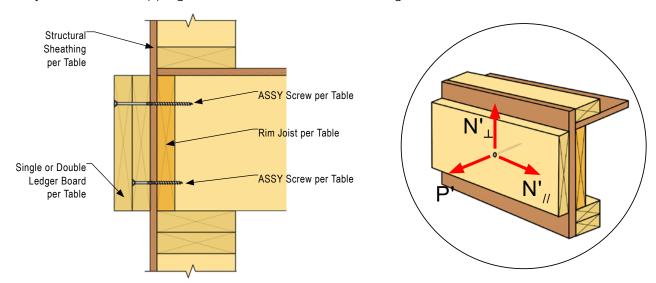
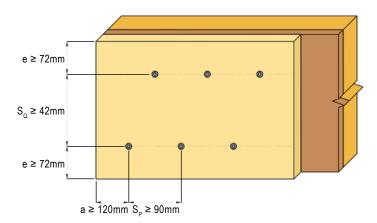
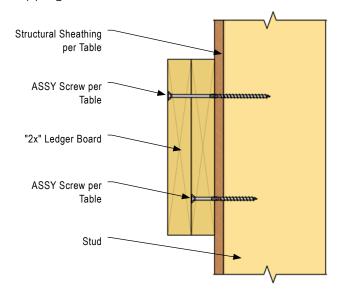



Table LG.6.1, Factored Resistances for Ledger Board to Rim Joist Connection

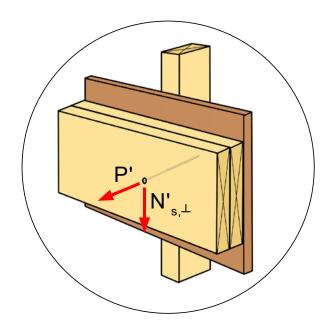
Ledger Configuration						Factored resistance [N]				
Туре		Thickness Ledger Rim Board Joist		Fastener Options	N'"	N'⊥	P' _{ECO}	P' _{sk}		
	G = 0.42 or Structural 1, Marine Grade		32mm EWP	32mm EWP	Eco / SK 6 x 90	910	420	1,120	1,120	
				38mm Lumber	Eco / SK 6 x 90	890	410	1,320	1,750	
po			38mm	32mm EWP	Eco / SK 6 x 90	890	420	1,120	1,120	
Plywood		12	Lumber	38mm Lumber	Eco / SK 6 x 90	870	390	1,320	1,750	
Ply			44mm EWP	32mm EWP	Eco / SK 6 x 120	1,020	490	1,120	1,120	
_			44mm EVVP	38mm Lumber	Eco / SK 6 x 120	980	480	1,320	1,750	
OSB			64mm EWP	32mm EWP	Eco / SK 6 x 140	1,020	580	1,120	1,120	
0 /	G = 0.50			64mm EVVP	38mm Lumber	Eco / SK 6 x 140	980	590	1,320	1,750
ш			Double 38mm Lumber	32mm EWP	Eco / SK 6 x 140	950	530	1,120	1,120	
SP				38mm Lumber	Eco / SK 6 x 140	940	540	1,320	1,750	
			89mm EWP	32mm EWP	Eco / SK 6 x 160	1,020	580	1,120	1,120	
			OBITITI EVVP	38mm Lumber	Eco / SK 6 x 160	980	600	1,320	1,750	

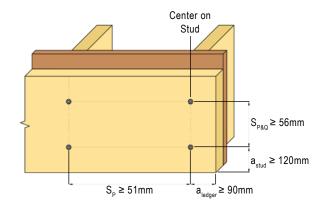

- 1. Factored resistances apply to a single fastener, conforming to the connection geometry and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Fasterner placement must respect the geometry requirements presented in the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- 5. Fasteners to be installed at a 90° angle intersecting the shear plane at the interface of members.
- Engineered Wood Products (EWP) must have a relative density equivalent to 0.50 as per their respective CCMC Evaluation Report for the loading condition.
- Wall sheathing must be independently fastened to the rim joist backing as per the applicable design codes or standards.
- Double ledger boards must be independently fastened to each other as per the applicable design codes or standards.
- It is recommended that additional backing be provided whenever the screw protrudes behind the rim joist.

Geometry Requirements

Ledger Board to Stud Wall Connection

Similar to rim joist connections, single and double ledger boards can be fastened to stud wall backing through structural sheathing with partially threaded self-tapping screws.




Table LG.7.1, Factored Resistances for Ledger Board to Stud Wall Connection

	Ledge	r Configuratio	n			Factor	red Resistan	ce [N]	
Thickness		Stud Type	Ledger Board		Fastener Options	N' _{s,} ⊥	P' _{ECO}	P' _{sk}	
	Poon 12 38 mm		32 mm EWP		Eco / SK	570	1,470		
poc			38 mm Lumber		6 x 90	540	1,320	1,470	
Jyw			44 mm EWP		Eco / SK 6 x 120	630	2,170		
1	12		64 mm EWP		Eco / SK 6 x 140	740	2,170	2 200	
OSB			Double 38mm Lumber		Eco / SK 6 x 160	720	1,320	2,390	
			89 mm EWP		Eco / SK 6 x 160	750	2,170		

Notes:

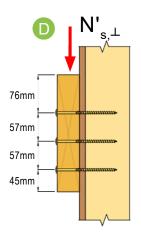
- 1. Factored resistances apply to a single fastener, conforming to the connection geometry and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- 4. Fastemer placement must respect the geometry requirements presented in the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- Fasteners to be installed at a 90° angle intersecting the shear plane at the interface of members.
- Engineered Wood Products (EWP) must have a relative density equivalent to 0.50 as per their respective CCMC Evaluation Report for the loading condition.
- Wall sheathing must be independently fastened to the rim joist backing as per the applicable design codes or standards.
- 8. Double ledger boards must be independently fastened to each other as per the applicable design codes or standards.

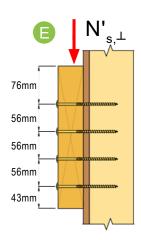
Geometry Requirements

Specific Ledger to Stud Connection Design

Table LG.7.2, Adjusted Resistance for Ledger Board to Stud Wall Connection

		Ledger Conf	figuration				Adjus	ted Resistar	ice [N]
т	hickness	Stud Type	Ledger Board	Assembly	Fastener Options	Number of Effective Fastener in a Row (n _F)	N' _{s,} ⊥	P' _{ECO}	P' _{sk}
		m 38 mm Lum- ber	38 x 184 mm Lumber	A	Eco / SK 6 x 90	2	1,090	2,640	3,060
	40.7		38 x184 mm Double Lumber	K	Eco / SK 6 x 160	2	1,440	2,640	5,280
			38 x 235 mm Lumber	В	Eco / SK 6 x 90	3	1,630	3,960	4,600
poo			38 x 235 mm Double Lumber		Eco / SK 6 x 160	3	2,160	3,960	7,920
Plywood			38 x 286 mm Lumber		Eco / SK 6 x 90	4	2,170	5,280	6,130
1	12.7 mm		38 x 286 mm Double Lumber	C	Eco / SK 6 x 160	4	2,880	5,280	10,560
OSB			44 x 235 EWP		Eco / SK 6 x 120	3	1,900	6,510	7,910
			89 x 235 EWP	D	Eco / SK 6 x 160	3	2,250	6,510	7,220
			44 x 287 EWP		Eco / SK 6 x 120	4	2,530	8,680	10,540
			89 x 287 EWP		Eco / SK 6 x 160	4	2,990	8,680	9,620

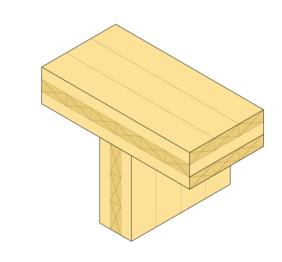

Notes:

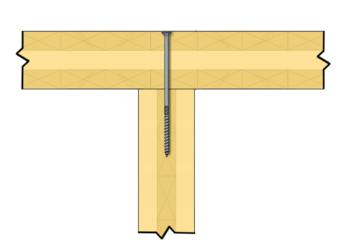

- Adjusted resistances apply to effective number fastener in a row (n_E), conforming to the connection geometry and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Fasterner placement must respect the geometry requirements presented in the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- Fasteners to be installed at a 90° angle intersecting the shear plane at the interface of members.

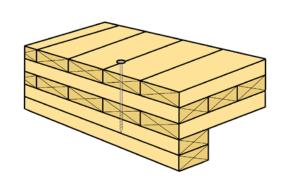
- 6. Engineered Wood Products (EWP) must have a relative density equivalent to 0.50 as per their respective CCMC Evaluation Report for the loading condition.
- Wall sheathing must be independently fastened to the rim joist backing as per the applicable design codes or standards.
- Double ledger boards must be independently fastened to each other as per the applicable design codes or standards.
- 9. Adjusted resistances calculations include the factored resistance (N' or P') and effective number fastener in a row ($n_{\rm F}$).

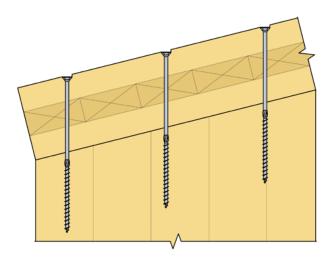
Geometry Requirements

Note:

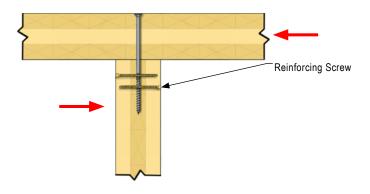

1. Minimum spacing requirements


Floor to Wall Connections


For CLT floor to wall connections, the designer should allocate special attention to ensure that minimum end and edge distance requirements for the narrow edge of CLT are satisfied.


Designers should also be aware that a three-ply or seven-ply CLT wall panel with its major span direction

oriented vertically may accept the screw into the side grain of the middle ply, whereas a five-ply panel in the same orientation may accept the screw into the end grain of the middle ply.



Reinforcement Possibilities

Out of plane shear loading in the narrow edge of CLT can result in reduced capacity due to splitting. Splitting risks may be reduced by installing fully threaded reinforcing screws.

CLT Floor to Wall Connections in Shear

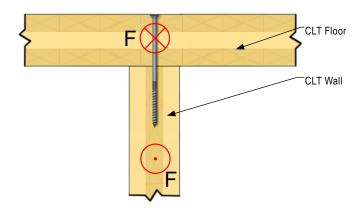


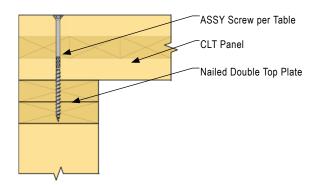
Table FW.1.1, Factored Resistances for CLT Floor to Wall Panel Connections Loaded in Shear

		Panel Configuration			Factored Re	esistance [N]	Minimum
		Loading	Panel Thickness (t)	Fastener Options	Standard Loading K _D =1.0	Short Term Loading K _D =1.15	Spacing in a Row (S _P)
			79	Eco			
			87	6 x 160	480	550	60
	N',,	φ	105	Eco 6 x 200			
3 PLY			103	Eco 8 x 200	850	980	80
3 P	N'⊥		79	Eco			
			87	6 x 160	420	480	60
			105	Eco 6 x 200			
			100	Eco 8 x 200	720	830	80
			130	Eco	1050		
			140	8 x 240		1210	80
	N',,		475	Eco 8 x 300	1000	1210	00
5 PLY			175	Eco 10 x 300	1550	1780	100
5 P			130	Eco	750	860	
			140	8 x 240	770	890	80
	N' _⊥		175	Eco 8 x 300	850	980	
			175	Eco 10 x 300	1150	1320	100

- Factored resistances apply to a single fastener, conforming to the connection geometry
 and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws
- 3. All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Connector placement must respect the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- Factored resistances require the fasteners to be installed at a 90° angle intersecting the shear plane at the interface of both CLT members.
- 6. Adjustment for end grain factor (J_F=0.67) in CLT shall be applied.
- 7. For loading perpendicular to the wall surface, effects of splitting shall be considered.
- B. N'_{II} Main member loaded perpendicular to grain (Θ = 90°; narrow edge); side member loaded parallel to grain (Θ = 0°).
 - N'_\ Main member loaded perpendicular to grain (Θ = 90°; narrow edge); side member loaded perpendicular to grain (Θ = 90°).

Table FW.1.2, Factored Resistances for CLT Panel to Wall Connections Loaded in Shear

		Panel Configuration				Factored Re	esistance [N]	Minimum
		Loading	Panel Thickness (t)		Fastener Options	Standard Loading K _D =1.0	Short Term Loading K _D =1.15	Spacing in a Row (S_p)
			101		Eco 8 x 300	850	980	80
			191		Eco 10 x 300	1250	1440	100
	NI,		219		Eco 8 x 340	850	980	80
	N' _{//}		219		Eco 10 x 360	1250	1440	100
			245		Eco 10 x 380	850	980	100
7 PLY					SK 12 x 400	1780	2050	120
7 P			191		Eco 8 x 300	730	840	80
					Eco 10 x 300	1030	1180	100
	NI?		219		Eco 8 x 340	730	840	80
	N' _⊥		218		Eco 10 x 360	1080	1240	100
					Eco 10 x 380	730	840	100
			245		SK 12 x 400	1540	1770	120

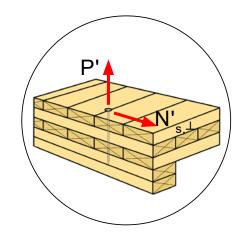

8.

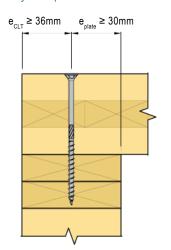
- Factored resistances apply to a single fastener, conforming to the connection geometry and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- 3. All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Connector placement must respect the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- Factored resistances require the fasteners to be installed at a 90° angle intersecting the shear plane at the interface of both CLT members.

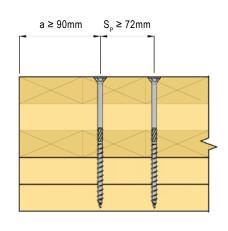
- 6. Adjustment for end grain factor (J_F =0.67) in CLT shall be applied.
- 7. For loading perpendicular to the wall surface, effects of splitting shall be considered.
 - N'_{II} Main member loaded perpendicular to grain (Θ = 90°; narrow edge); side member loaded parallel to grain (Θ = 0°).
 - N'_{\perp} Main member loaded perpendicular to grain (Θ = 90°; narrow edge); side member loaded perpendicular to grain (Θ = 90°).

CLT Floor to Top Plate Connection - Top Screwed

In hybrid structures made of light-frame walls and mass timber floor, an efficient option to connect CLT floor panels to load-bearing walls uses self-tapping screws installed from the top of the panel.




Table FW.2, Factored Resistances for CLT Floor to Top Plate Connection (Top)


Par	nel & Top Wall C	onfiguration			Factor	red Resistan	ce [N]				
Wall Top Plate		Panel Thickness (t)		Fastener Options	$\mathbf{N'}_{\mathbf{s},\perp}$	P' _{eco}	P' _{sk}				
>		79		Eco / SK 6 x 160	720						
PLY	Double 38 mm Lumber	87		87		87		Eco / SK 6 x 160	680	1320	2170
က		105		Eco / SK 6 x 180	690						
>		130		Eco / SK 6 x 200	660						
PLY	Double 38 mm Lumber	140		Eco / SK 6 x 220	710	1320	2170				
2		175		Eco / SK 6 x 260	720						

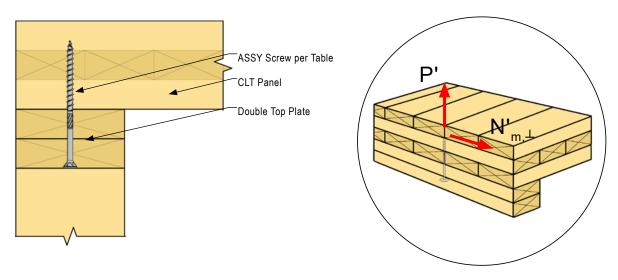
Notes:

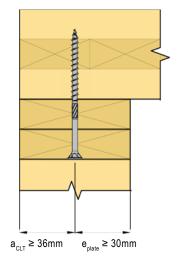
- Factored resistances apply to a single fastener, conforming to the connection geometry
 and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Fasterner placement must respect the geometry requirements presented in the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- Fasteners to be installed at a 90° angle intersecting the shear plane at the interface of the wall and floor members.
- Double top plates and built-up studs must be independently fastened to each other as per the applicable design codes or standards.

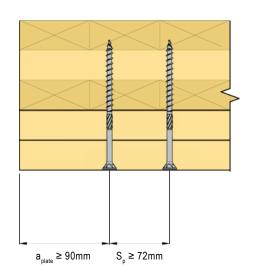
Geometry Requirements

CLT Floor to Top Plate Connection - Bottom Screwed

Self-tapping screws offer a quick to install, ductile connection between CLT floor panels and supporting light-frame walls below. Installing self-tapping screws through the double top plate is the most economic option due to shorter screw lengths compared to other alternatives.




Table FW 3. Factored Resistances for CLT Floor to Top Plate Connection (Bottom)


Pan	Panel & Top Wall Configuration				Factored Resistance [N]			
Wall Top Plate Panel Thickness (t)			Fastener Options	N' _{m,} _	P' _{eco}	P' _{sk}		
>	79							
3 PLY	Double 2" Lumber	87		Eco / SK 6 x 140	730	1320	2610	
		105						

Notes:

- Factored resistances apply to a single fastener, conforming to the connection geometry
 and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- 3. All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- 4. Fasterner placement must respect the geometry requirements presented in the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- Fasteners to be installed at a 90° angle intersecting the shear plane at the interface of the wall and floor members.
- Double top plates and built-up studs must be independently fastened to each other as per the applicable design codes or standards.

Geometry Requirements

NLT Floor to Top Plate Connection - Inclined Screws

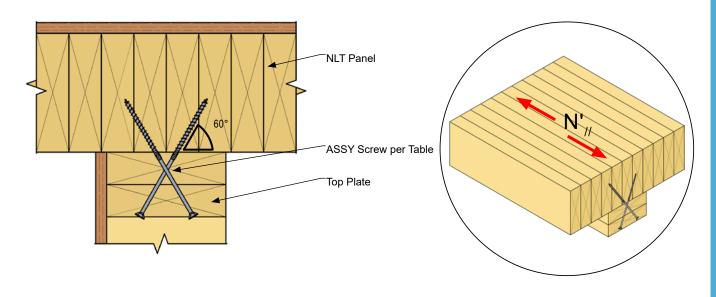
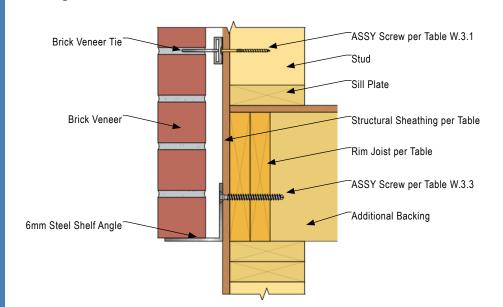


Table FW.9, Factored Resistances for Built-Up Stud to Top Plate Connections

Р	anel & Top Wall Configurati	on			
Wall Top Plate	Loading	Buil-Up Top Plate	Fastener Options		Factored Resistance per Screw Cross [N]
				Eco 6 x 120	1490
<u>_</u>	D	Double 38 mm Lumber		Eco 6 x 140	1870
Double " Lumber	NI?			Eco 6 x 160	1670
Dou 2" Lu	N' _{//}			Eco 6 x 180	1830
7		Triple 38 mm Lumber		Eco 6 x200	1870
				Eco 6 x 220	1670


- Factored resistances listed apply to two fasteners installed in a screw cross configuration, conforming to the connection geometry and the loading configuration described for that design value
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- 3. All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Fastemer placement must respect the geometry requirements presented in the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- Fasteners to be installed at a 60° angle intersecting the shear plane at the interface wall and floor members.
- 6. The angle between force and fastener axis is 90°.
- 7. Sawn Lumber studs and plates with multiple plies must be independently fastened to each other as per the applicable design codes or standards.

Wall Connections

Brick Veneer to Wall Connection

Non-structural brick veneers are commonly supported laterally by proprietary steel connectors. These steel connectors can easily be installed with partially threaded self-tapping screws since they will tightly fasten the steel connector to the main structural framing.

By eliminating pre-drilling requirements fully-threaded self-tapping screws are a more efficient alternative to typical lag-bolt or through-bolt shelf-angle connections.

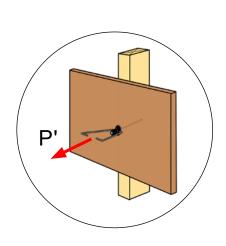


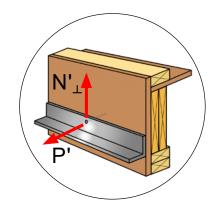
Table W.3.1, Factored Resistances for Brick Veneer Tie Connection

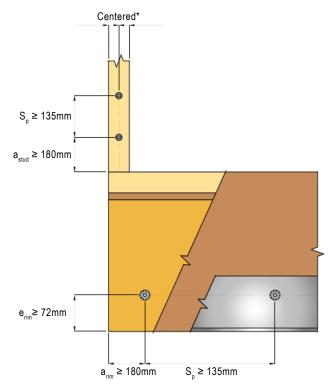
Sheating Configu	ration				Factored Resistance [N]
Туре	Thickness	Stud Backing	Tie Plate Thickness	Fastener Options	Р'
Plywood	12	1 38mm 1	16 00	Eco 6 x 60	1430
(G = 0.42)	2) 25		16 ga	Eco 6 x 70	1660

- Factored resistances apply to a single fastener, conforming to the connection geometry and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Fastemer placement must respect the geometry requirements presented in the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- The factored withdrawal design value shall not exceed the Factored tensile strength of the screw.
- $\label{eq:continuous} 6. \qquad \text{Refer to the brick veneer tie manufacturer for specific installation and design requirements}.$
- Wall sheathing must be independently fastened to the stud wall backing as per the applicable design codes or standards.
- Steel members must be pre-drilled prior to the installation of the fasteners. The designer must assure that all possible stress limits in the steel and wood are not exceeded.

Table W.3.2, Steel Plate Pre-Drilling Hole Diameter

Screw Nominal Diameter	Steel Plate Hole Diameter				
in. [mm]	in. [mm]				
1/4" [6]	9/32" [7]				
5/16" [8]	3/8" [9]				
3/8" [10]	7/16" [11]				
1/2" [12]	17/32" [13]				



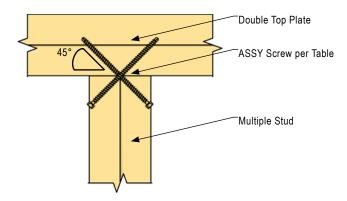

Table W.3.3, Refence Design Values for Brick Veneer Shelf Angle Connection

Shea	Sheating Configuration				st Additional Backing			Factored Re	sistance [N]
Туре		Thickness	Steel Thickness	Rim Joist			Fastener Options	N' _⊥	Ρ'
	G = (0.49) 12 6	32mm EWP		VG CSK 10 x 100	1850	4480			
		40	6	32mm EWP 38 mm Lumber	SZIIIII LVVI		VG CSK 12 x 120	2670	5320
Plywood					45mm EWP		VG CSK 10 x 100	1850	5250
Plyw		12					VG CSK 12 x 120	2670	6230
					38 mm Lum-		VG CSK 10 x 100	1700	6760
					ber		VG CSK 12 x 120	2440	8100

Notes:

- Factored resistances apply to a single fastener, conforming to the connection geometry and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Fasterner placement must respect the geometry requirements presented in the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- Fasteners to be installed at a 90° angle intersecting the shear plane at the interface of the wall and the steel angle.
- Factored resistances apply to screws installed perpendicular to the grain of the main wood member.
- The factored withdrawal design value shall not exceed the Factored tensile strength of the screw.
- Shelf angle steel must conform to ASTM A36/A36M-14: Standard Specification for Carbon Structural Steel (or better).
- Steel members must be pre-drilled prior to the installation of the fasteners. The designer must assure that all possible stress limits in the steel and wood are not exceeded.
- Engineered Wood Products (EWP) must have a relative density equivalent to 0.50 as per their respective CCMC Evaluation Report for the loading condition shown above.
- 11. Wall sheathing must be independently fastened to the rim joist as per the applicable design codes or standards.
- Rim joist backing must be independently fastened to the rim joist as per the applicable design codes or standards.
- It is recommended that additional backing be provided whenever the screw protrudes behind the rim joist.

Geometry Requirements

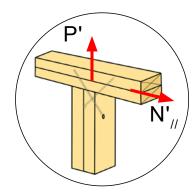


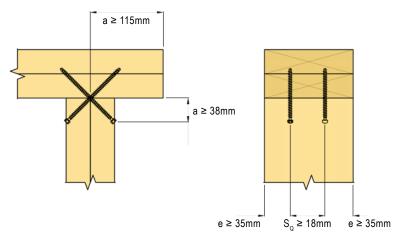
^{*} Fastener shall be installed centered on stud.

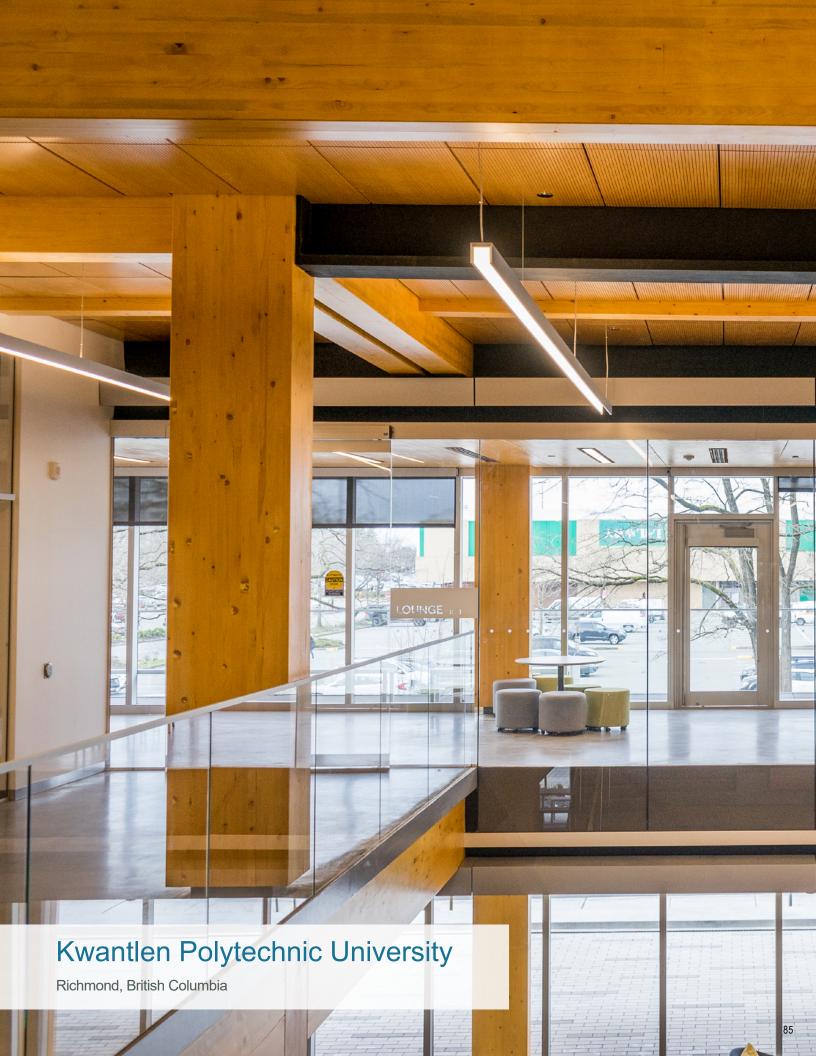
Top Plate to Stud Lateral Connection

In cases where double top plates need to be connected to built-up studs to transfer large shear or uplift loads,

inclined fully threaded self-tapping screws can be used for a stiff and strong connection.



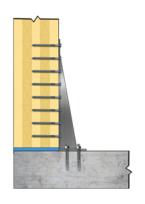

Table W.4, Factored Resistances for Built-Up Stud to Top Plate Connections

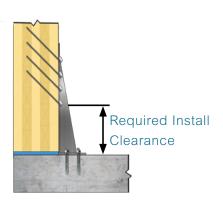

Top Plat	e & Stud Con	figuration		Factored Resistance
Top Plate	Loading	Buil-Up Stud	Fastener Options	per Screw Cross [N]
pe N'			VG Cyl 6 x 120	
	N',,	Dbl. 38 mm Lumber	VG Cyl 6 x 140	3000
Double mm Lumber			VG Cyl 6 x 160	
Dot mm	or P'		VG Cyl 6 x 140	2980
38 [Trip. 38 mm Lumber	VG Cyl 6 x 160	4090
			VG Cyl 6 x 180	4490

Notes:

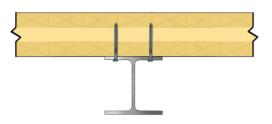
- Factored resistances listed apply to two fasteners installed in a screw cross configuration, conforming to the connection geometry and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- 4. Fasterner placement must respect the geometry requirements presented in the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- Fasteners to be installed at a 45° angle intersecting the shear plane at the interface of the studs and the top plate.
- 6. The angle between force and fastener axis is 45°.
- Sawn Lumber studs and plates with multiple plies must be independently fasten to each other as per the applicable design codes or standards.

Geometry Requirements

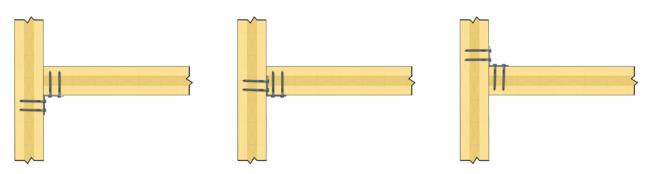



Steel to Wood Connections

Steel to CLT connections are a very common detail seen in modern mass timber construction, ranging from long collector straps fastened to the lateral load resisting core to high capacity hold down systems. Due to the high dowel bearing strength of steel, shear connections are typically stiffer than wood-to-wood installations but are limited by the bending yield strength of the fastener and wood embedment strength.

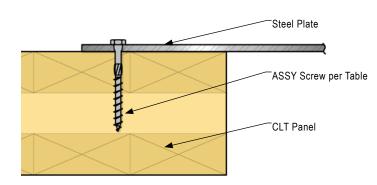

The possibility of using inclined screws, either with angled washers or reamed housing to accept the screw head offers high capacity options. The high connection strength of inclined screws thereby opens new doors toward innovative and economical design in modern mass timber structures. Due to the high axial stiffness of self-tapping fasteners, applications in moment resisting timber joints and collector plates for high overturning forces can be achieved with smaller numbers of screws, while providing high stiffness to the system.

CLT wall hold down connection using shear screws, see page 86 for details.


CLT wall hold down connection using inclined screws, see page 88 for details.

CLT deep H-beam connection using shear screws, see page 86 for details.

CLT wide H-beam connection using shear screws, see page 86 for details.


CLT floor to wall connections using angle brackets in different configurations, see page 86 for details on steel to wood connection.

CLT Panel with Steel Side Plate in Shear

The ASSY Kombi screw is engineered for steel to wood connections where the screw is loaded perpendicular to the screw axis.

and also provides a suitable bearing surface for the steel side plate.

The tapered shoulder of the Kombi head reduces slip

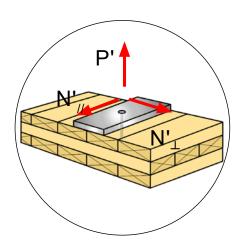


Table SC.1.1, Factored Resistances for CLT Steel Side Plate Connections

		CLT Panel & Steel Plate Co	onfiguration				Factored Resistance [N]		
Loading			Panel Thickness [t]	Steel Plate Thickness		Fastener Options	N'	P,	
			79	4.76		Kombi 8 x 80			
	N',,		to	6.35		Kombi 8 x 80	2203	0050	
PLY			105	12.7		Kombi 8 x 80			
3			79	4.76		Kombi 8 x 80		2350	
I	N' _⊥		to	6.35		Kombi 8 x 80	1545		
			105	12.7		Kombi 8 x 80			

- Factored resistances apply to a single fastener, conforming to the connection geometry
 and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Fasterner placement must respect the geometry requirements presented in the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- Factored resistances require the fasteners to be installed at a 90° angle intersecting the shear plane at the interface of steel side member and CLT.

- 6. The angle between force and fastener axis is 90°.
- The side member must be ASTM A36 grade steel or higher. In accordance with CSA O86 2019, Clause 12.6.5 is used to find the embedment strength with steel side plate.
- Steel members must be pre-drilled prior to the installation of the fasteners. The designer must assure that all possible stress limits in the steel and wood are not exceeded.
- 9. N'_{\parallel} Main member loaded parallel to grain ($\Theta = 0^{\circ}$).
 - N'. Main member loaded perpendicular to grain ($\Theta = 90^{\circ}$).
 - P' Steel plate loaded in withdrawal.

Table SC.1.3, Steel Plate Pre-Drilling Hole Diameter

Screw Nominal Diameter	Steel Plate Hole Diameter
in. [mm]	in. [mm]
1/4" [6]	9/32" [7]
5/16" [8]	3/8" [9]
3/8" [10]	7/16" [11]
1/2" [12]	17/32" [13]

Table SC.1.2, Factored Resistances for CLT Steel Side Plate Connections

	CLT Panel & Steel Plate Configuration					Factored Re	Factored Resistance [N]		
		Loading	Panel Thickness [t]	Steel Plate Thickness	Fastener Options	N'	P'		
					Kombi 8 x 80	2200	2350		
				4.76	Kombi 10 x 120	3250	4780		
				4.70	Kombi 12 x 120	4620	5460		
					Kombi 12 x 140	1,020	0.00		
			139		Kombi 8 x 80	2200	2350		
	N',,		to	6.35	Kombi 10 x 120	3250	4780		
			245	0.33	Kombi 12 x 120	4620	5460		
					Kombi 12 x 140	4020	3400		
					Kombi 10 x 120	3250	4780		
PLY			12.7	Kombi 12 x 120	4620	5460			
8 7					Kombi 12 x 140	4020	0400		
				4.76	Kombi 8 x 80	1540	2350		
5 PLY					Kombi 10 x 120	2280	4780		
					Kombi 12 x 120	3240	5460		
					Kombi 12 x 140	3240	3400		
			139		Kombi 8 x 80	1540	2350		
	N' _⊥		to	6.35	Kombi 10 x 120	2280	4780		
			245	0.00	Kombi 12 x 120	3240	5460		
					Kombi 12 x 140	3240	J-100		
					Kombi 10 x 120	2280	4780		
				12.7	Kombi 12 x 120	3240	5460		
					Kombi 12 x 140	3240	J-00		

See notes under Table Table SC.1.1, page 86.

CLT and Steel Plate with Inclined Screws

Steel to wood connections with inclined fasteners installed at a 45° angle usually offer higher connection strength and stiffness versus 90° shear screws. Tabulated values in this section incorporate the use of ASSY 45° wedge washers to provide bearing support in thin steel plates (although the use of thicker plates with reamed out holes is possible). When using wedge washers, ASSY 45° pre-drill jigs are used to establish 45° pilot holes at the correct location in the panels.

To reduce group tear-out failure modes and to activate the reinforcing effect of the crossing layers, screws should penetrate as many plies as possible. Inclined screws can transmit large tensile forces and connections must be accordingly detailed. Detailing must consider offsetting cross screws by 1.5D and overlapping of 4D when installing from opposite sides.

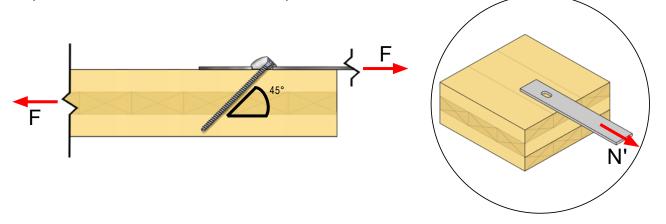


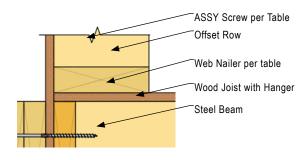
Table SC.2.1, Factored Resistances for CLT Steel Side Plate Connections

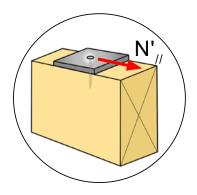
		CLT Panel & Steel Plate Co	onfiguration				
		Loading	Steel Plate Thickness	Panel Thickness (t)	Fastener Options		Factored Resistance [N]
			4	≥ 87		VG CSK 8 x 140	3920
	N' _{//}		12.7	≥ 105		VG CSK 8 x 160	4710
PLY			6.4 - 19.1	≥ 105		VG CSK 10 x 160	5380
3 P			4	≥ 87		VG CSK 8 x 140	4220
	N' _⊥		12.7	≥ 105		VG CSK 8 x 160	4960
			6.4 - 19.1	≥ 105		VG CSK 10 x 160	5670

- Factored resistances apply to a single fastener, conforming to the connection geometry
 and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Fasterner placement must respect the geometry requirements presented in the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- Fasteners are installed with MTC Solutions 45° washer, intersecting the shear plane at the interface of steel side member and CLT.
- 6. The angle between force and fastener axis is 45°.

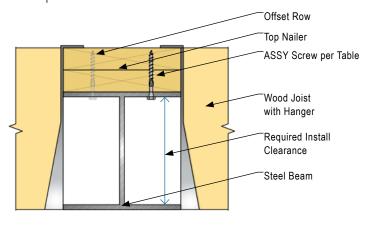
- For ranges in steel plate thicknesses a design value is provided while assuring no through penetration of the fastener in the CLT panel with minimum steel plate thickness.
- The side member must be ASTM A36 grade steel or higher. In accordance with CSA O86 2019, Clause 12.6.5 is used to find the embedment strength with steel side plate.
- Steel members must be pre-drilled prior to the installation of the fasteners. The designer must assure that all possible stress limits in the steel and wood are not exceeded.
- 10. For more information on how to predrill a steel plate with MTC Solutions 45° washer, please refer to the detailing section of this guide, page 104.
- N'_{II} Factored resistance per screw in tension with loading direction along major span direction of CLT panel.
 - N'_⊥ Factored resistance per screw in tension with loading direction along minor span direction of CLT panel.

Table SC.2.2, Factored Resistances for CLT Steel Side Plate Connections


		CLT Panel & Steel Plate C				
		Loading	Steel Plate Thickness	Panel Thickness (t)	Fastener Options	Factored Resistance [N]
			,	≥ 131	VG CSK 8 x 180	5520
			4 - 12.7	≥ 139	VG CSK 8 x 200	6030
	NI,		12.7	≥ 175	VG CSK 8 x 240	7600
	N' _{//}			≥ 131	VG CSK 10 x 180	6380
			6.4 - 19.1	≥ 139	VG CSK 10 x 200	7030
5 PLY				≥ 175	VG CSK 10 x 240	8980
5 P				≥ 131	VG CSK 8 x 180	5670
			4 - 12.7	≥ 139	VG CSK 8 x 200	6520
	NI'			≥ 175	VG CSK 8 x 240	7830
	N' _⊥		6.4	≥ 131	VG CSK 10 x 180	6560
			6.4 - 19.1	≥ 139	VG CSK 10 x 200	7610
				≥ 175	VG CSK 10 x 240	9260
			6.4 - 19.1	≥ 191	VG CSK 10x 260	9660
				≥ 220	VG CSK 10 x 320	12510
	N',,			≥ 245	VG CSK 10 x 340	13460
			6.4	≥ 191	VG CSK 12 x 280	12030
PLY			25.4	≥ 220	VG CSK 12 x 300	13340
7 P				≥ 191	VG CSK 10x 260	10380
			6.4 - 19.1	≥ 220	VG CSK 10 x 320	13030
	N' _⊥		.3	≥ 245	VG CSK 10 x 340	13580
			6.4	≥ 191	VG CSK 12 x 280	12930
			25.4	≥ 220	VG CSK 12 x 300	13900


See notes under Table Table SC.2.1, page 88.

Steel Beam to Wood Connection


Timber joist members can be connected to structural steel I-beams by providing either web or top flange nailers that the joists can be attached to. Self-tapping screws can be installed to structurally connect nailers to the steel beam and be able to transfer in-plane lateral diaphragm forces.

Steel Beam to Web Nailer Connection

Steel Beam to Top Nailer Connection

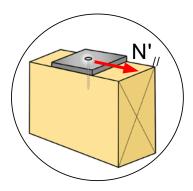
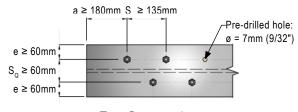


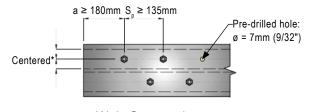
Table SC.3.1, Factored Resistances for Steel Beam to Web Nailer Connection


Ste	el Beam & Wo	od Configura	tion		
Loading	Nailer Rela- tive Density	Nailer Thickness	Flange Thickness	Fastener Options	Factored Resistance [N]
			2.5	Kombi 8 x 60	
		38	5	Kombi 8 x 60	
	(G = 0.42)		7	Kombi 8 x 60	2270
			10	Kombi 8 x 60	
NI,			12.5	Kombi 8 x 60	
N',,		44	2.5	Kombi 8 x 60	
			5	Kombi 8 x 60	
	(G = 0.50)		7	Kombi 8 x 60	2470
			10	Kombi 8 x 60	
			12.5	Kombi 8 x 60	

Notes:

- 1. Factored resistances apply to a single fastener, conforming to the connection geometry and the loading configuration described for that design value.
- Factored resistance listed are only valid for Limit State Design in Canada and for listed ASSY screws.
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Fasterner placement must respect the geometry requirements presented in the minimum spacing, edge, & end distance requirements for ASSY screws, as specified in the Detailing Section of this guide, pages 92 to 104.
- Fasteners to be installed at a 90° angle intersecting the shear plane at the interface of the steel and wood members.

- Factored resistances apply to screws installed perpendicular to the grain direction of the main wood member.
- Steel members must be pre-drilled prior to the installation of the fasteners. The designer must assure that all possible stress limits in the steel and wood are not exceeded.
- 8. Steel beams must conform to ASTM A36/A36M-14: Standard Specification for Carbon Structural Steel (or better).
- Engineered Wood Products (EWP) must have a relative density equivalent to 0.50 as per their respective CCMC Evaluation Report for the loading condition shown above.


Geometry Requirements

Top Connection

Notes:

* Fastener shall be installed centered on nailer.

Web Connection

Detailing Section

Geometry Requirements

Spacing and Edge Distance Requirements

Spacing and distance requirements ensure full fastener resistance can be developed. Self-tapping screws displace wood fiber as the screw is driven into the member, while pre-drilling removes wood fiber.

The spacing and edge distance requirements for self-tapping screws, vary when compared to other fasteners. If pre-drilling is implemented, the spacing and edge distance requirements as per CSA O86-19 Clause 12.6.2 may apply.

Fasteners in Narrow Edge

Geometry Requirements in CLT for ASSY Screws Without Pre-Drilled Holes

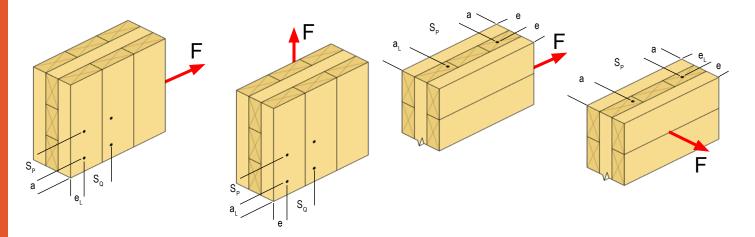
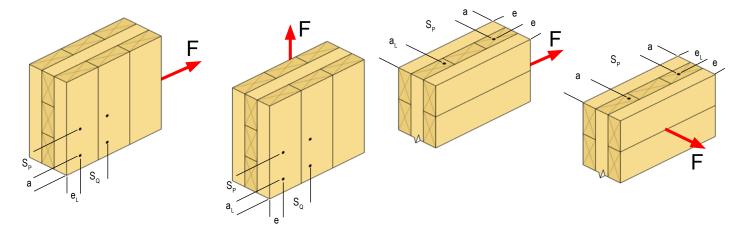


Table S.1.1, CLT Connection Geometry Requirements without Pre-drilling

CLT Plane	End Di	stance	Edge D	istance	Spacing Between Fasteners in a Row	Spacing Between Rows
	a	а	e L	e	S _P	S Q
Fastener In Plane Surface	6 D	6 D	6 D	2.5 D	4 D	2.5 D
Fastener in Narrow Edge	12 D	7 D	6 D	3 D	10 D	4 D

Notes:


 All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.

Fasteners in Plane Surface

- Spacing, end and edge distance requirements are calculated with the nominal diameter of the fastener D.
- 3. Spacing, end and edge distance requirements in the above tables were verified in testing.
- 4. The listed values are applicable when the CLT panel thickness is at least 10·D.
- 5. The minimum penetration depth of the screw into the narrow face of the panel should be equal to the maximum of the thread length and 10D.

Geometry Requirements in CLT for ASSY Scews With

Pre-Drilled Holes

Fasteners in Plane Surface

Fasteners in Narrow Edge

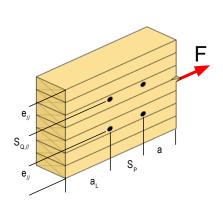
Table S.1.2, CLT Connection Geometry Requirements with Pre-drilled Holes, C_{Δ} =1.0

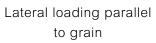
CLT Plane	End Di	stance	Edge D	istance	Spacing Between Fasteners in a Row	Spacing Between Rows
	a L	а	e L	е	S _P	S _Q
Fastener In Plane Surface	Plane Surface 50mm 50mm 4 D 3 D		3 D	3 D	3 D	
Fastener in Narrow Edge	50mm	50mm	5 D	3 D	4 D	3 D

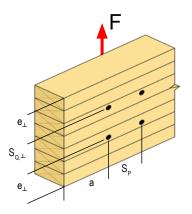
Notes:

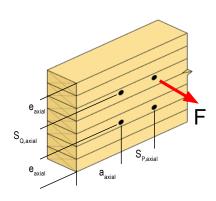
- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Spacing, end and edge distance requirements are calculated with the nominal diameter of the fastener D.
- Geometry requirements in CLT for ASSY scews with pre-drilled holes are taken from CSA O86 2019, clause 12.6.
- Full penetration length must be pre-drilled with a hole diameter according to the pre-drilling recommendations, presented in Table S.5.

Pre-Drilling Recommendations


Table S.5, Pre-drilling hole diameter


Major Diameter	Softwood	Hardwood	Steel Plate		
[D]	in. [mm]	in. [mm]	in. [mm]		
1 / 4" [6]	5 / 32" [4]	5 / 32" [4]	9 / 32" [7]		
5 / 16" [8]	3 / 16" [5]	15 / 64" [6]	23 / 64" [9]		
3 / 8" [10]	15 / 64" [6]	17 / 64" [7]	7 / 16" [11]		
1 / 2" [12]	17 / 64" [7]	5 / 16" [8]	33 / 64" [13]		


- 1. All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- 2. Consult a qualified design professional before pre-drilling.
- 3. Pre-drilled holes that exceed the diameters listed above may reduce the capacity of the screws.
- 4. Recommendations only applicable to ASSY screws.


Geometry Requirements for ASSY Screws

Lateral loading perpendicular to grain

Axial loading

Table S.2.1, Timber Connection Geometry Requirements without Pre-drilling

Fastener Thread	Specific	End Distance			Edge Distance			Spacing Between Fasteners in a Row		Spacing Between Rows	
Type	Gravity	$a_{\scriptscriptstyle L}$	а	a _{axial}	е "	e⊥	e _{axial}	S _p	S p,axial	Sq	S _{Q,axial}
	G ≤ 0.42	15 D	10 D	10 D	5 D	10 D	5 D	12 D	12 D	5 D	5 D
Partial Thread	0.42 < G ≤ 0.55	20 D	15 D	15 D	7 D	12 D	7 D	15 D	15 D	7 D	7 D
moda	D. Fir, G = 0.49	30 D	22.5 D	22.5 D	7 D	12 D	7 D	22.5 D	22.5 D	7 D	7 D
	G ≤ 0.42	12 D	7 D	5 D	3 D	7 D	3 D	5 D	5 D	3 D	2.5 D
Full Thread	0.42 < G ≤ 0.55	12 D	7 D	5 D	3 D	7 D	3 D	5 D	5 D	3 D	2.5 D
	D. Fir, G = 0.49	18 D	10.5 D	7.5 D	3 D	7 D	3 D	7.5 D	7.5 D	3 D	2.5 D

Notes:

- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Spacing, end and edge distance requirements are calculated with the nominal diameter of the fastener D.
- 3. According to CCMC 13677-R 2020.

- Tabulated values listed above must prevent splitting in wood. Shall splitting be observed a
 design professional must be consulted immediately.
- Within a row, fasteners may be staggered up to 2·D to further reduce the potential for splitting.

Table S.2.2, Timber Connection Geometry Requirements with Pre-drilled Holes, C,=1.0

End Distance			Е	dge Distand	ce	Spacing Between Fasteners in a Row		Spacing Between Rows	
а	a	a _{axial}	axial e		e axial	S _p	S _{p,axial}	Sq	S _{Q,axial}
max(7 D;50mm)	50mm	50mm	4 D	3 D	3 D	4 D	4 D	3 D	3 D

- All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.
- Spacing, end and edge distance requirements are calculated with the nominal diameter of the fastener D.
- Full penetration length must be pre-drilled with a hole diameter according to the pre-drilling recommvendations, presented in Table S.5.
- . According to CSA O86 2019, clause 12.6
- 5. Minimum fastener penetration 6·D.
- 6. * for softwood only

ASSY Allowable Fastener Tensile Strength

Table S.3, ASSY Allowable Tensile Strength

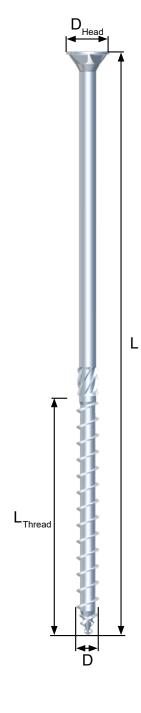
		1001	1007		
Ma	jor Diameter	ASSY Eco / Kombi / SK	ASSY VG CSK / VG CYL		
[D]		[kN]	[kN]		
	6	9	9		
	8	15.12	15.12		
	10	19.20	19.20		
	12	24	24		

Notes:

ASSY Adjusted Fastener Torsional Strength

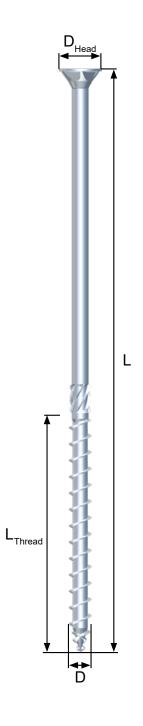
Table S.4, ASSY Adjusted Torsional Strength

	Factored Torsional Strength [N.m]							
Fastener Type	[D]							
	6	8	10	12				
ASSY Eco / Kombi / SK	7.27	16.73	32.73	47.27				
ASSY VG CSK / VG CYL	7.27	16.73	32.73	54.55				


All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.

^{1.} All connection design must meet all relevant requirements of the General Notes to the Designer section, page 16.

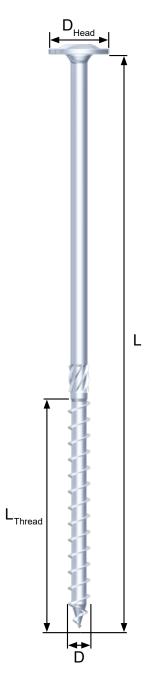
Hardware


ASSY Ecofast

Item#	Box size	D	L		L _{Th}	read	D _{Head}	Bit
#	pieces	in.	in.	[mm]	in.	[mm]	in.	Dit
	piococ	[mm]		[]		[]	[mm]	
110060060000100	200		2-1/8	[60]	1-1/2	[37]		
110060070000100	200		2-3/4	[70]	1-5/8	[42]		
110060080000100	100		3-1/8	[80]	2	[50]		
110060090000100	100		3-1/2	[90]	2	[50]		
110060100000100	100		4	[100]	2 3/8	[60]		
110060120000100	100	1/4	4-3/4	[120]	2-3/4	[70]	0.472	
110060140000100	100	[6]	5-1/2	[140]	2-3/4	[70]	[12]	AW 30
110060160000100	100		6-1/4	[160]	2-3/4	[70]		
110060180000100	100		7-1/8	[180]	2-3/4	[70]		
110060200000100	100		7-7/8	[200]	2-3/4	[70]		
110060220000100	100		8-5/8	[220]	2-3/4	[70]		
110060260000100	100		10 1/4	[260]	2 3/4	[70]		
110060300000100	100		11 7/8	[300]	2 3/4	[70]		
110080080000300	75		3 1/8	[80]	2	[50]		
110080090000300	75		3 1/2	[90]	2 3/8	[60]		
110080100000300	75		4	[100]	2 3/8	[60]		
110080120000300	75		4 3/4	[120]	3 1/8	[80]		
110080140000300	75		5 1/2	[140]	3 1/8	[80]		
110080160000300	75		6 1/4	[160]	3 1/8	[80]		
110080180000300	75		7 1/8	[180]	3 1/8	[80]		
110080200000300	75	5/16	7 7/8	[200]	3 1/8	[80]	0.591	A\A/ 40
110080220000300	75	[8]	8 5/8	[220]	4	[100]	[15]	AW 40
110080240000300	75		9 1/2	[240]	4	[100]		
110080260000300	75		10 1/4	[260]	4	[100]		
110080280000300	75		11	[280]	4	[100]		
110080300000300	75		11 7/8	[300]	4	[100]		
110080340000300	100		13 3/8	[340]	4	[100]		
110080360000300	100		14 1/4	[360]	4	[100]		
11008040000300	100		15 3/4	[400]	4	[100]		

Notes: For more ASSY fastener options, visit the MTC Solutions Website at mtcsolutions.com.

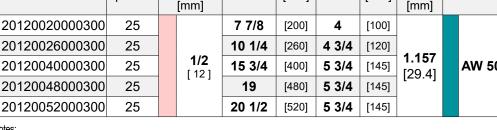
Item#	Box size	D		L		L _{Th}	read	D _{Head}	Dit
#	nionon		in.	in	[mm]	in	[mm]	in.	Bit
#	pieces		[mm]	in.	[mm]	in.	[mm]	[mm]	
110100080000300	50			3 1/8	[80]	2	[50]		
110100100000300	50			4	[100]	2 3/8	[60]		
110100120000300	50			4 3/4	[120]	3 1/8	[80]		
110100140000300	50			5-1/2	[140]	3-1/8	[80]		
110100160000300	50			6-1/4	[160]	4	[100]		
110100180000300	50			7-1/8	[180]	4	[100]	0.700	
110100200000300	50		3/8 [10]	7-7/8	[200]	4	[100]	0.728 [18.5]	AW 40
110100220000300	50			8-5/8	[220]	4	[100]	[]	
110100260000300	50			10-1/4	[260]	4	[100]		
110100300000300	50			11-7/8	[300]	4	[100]		
110100360000300	50			14-1/4	[360]	4-3/4	[120]		
110100380000300	50			15	[380]	4 3/4	[120]		
110100400000300	50			15 3/4	[400]	4 3/4	[120]		



Notes:
1. For more ASSY fastener options, visit the MTC Solutions Website at mtcsolutions.com.

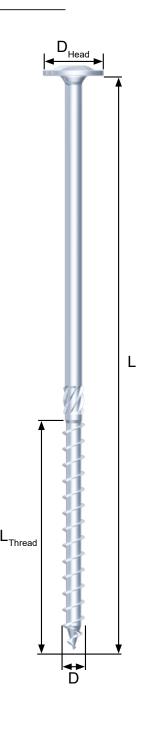
ASSY SK

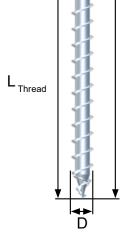
Item#	Box size	D	L		L _{Th}	read	D _{Head}	Bit
#	pieces	in.	in.	[mm]	in.	[mm]	in.	DIL
#	pieces	[mm]		נוווווון	111.	Liiiiii	[mm]	
120060060000303	100		2-1/8	[60]	1-1/2	[37]		
120060070000303	100		2-3/4	[70]	1-5/8	[42]		
120060080000303	100		3-1/8	[80]	2	[50]		
120060090000303	100		3-1/2	[90]	2	[50]		
120060100000300	100		4	[100]	2 3/8	[60]		
120060120000300	100	414	4-3/4	[120]	2-3/4	[70]	0.554	
120060140000303	100	1/4 [6]	5-1/2	[140]	2-3/4	[70]	0.551 [14]	AW 30
120060160000303	100	[0]	6-1/4	[160]	2-3/4	[70]	[,,]	
120060180000303	100		7-1/8	[180]	2-3/4	[70]		
120060200000303	100		7-7/8	[200]	2-3/4	[70]		
120060220000303	100		8-5/8	[220]	2-3/4	[70]		
120060260000303	100		10 1/4	[260]	2 3/4	[70]		
120060300000303	100		11 7/8	[300]	2 3/4	[70]		


Item#	Box size	D	L		L _{Th}	read	D _{Head}	
#	pieces	in. [mm]	in.	[mm]	in.	[mm]	in. [mm]	Bit
120080080000303	50		3 1/8	[80]	2	[50]		
120080100000303	50		4	[100]	2 3/8	[60]		
120080120000300	50		4 3/4	[120]	3 1/8	[80]		
120080140000303	50		5 1/2	[140]	3 1/8	[80]		
120080160000303	50		6 1/4	[160]	3 1/8	[80]		
120080180000303	50		7 1/8	[180]	3 1/8	[80]		
120080200000303	50		7 7/8	[200]	3 1/8	[80]		
120080220000303	50		8 5/8	[220]	4	[100]		
120080240000303	50	5/16 [8]	9 1/2	[240]	4	[100]	0.870 [22.1]	AW 40
120080260000303	50	[0]	10 1/4	[260]	4	[100]	[22.1]	
120080280000303	50		11	[280]	4	[100]		
120080300000303	50		11 7/8	[300]	4	[100]		
120080320000303	50		12 5/8	[320]	4	[100]		
120080340000303	50		13 3/8	[340]	4	[100]		
120080400000303	50		15 3/4	[400]	4	[100]		
120080480000103	25		19	[480]	4	[100]		
120080520000103	25		20 1/2	[520]	4	[100]		

Notes:
1. For more ASSY fastener options, visit the MTC Solutions Website at mtcsolutions.com.

Item#	Box size	D	L		L _{Th}	read	D _{Head}	Bit
#	pieces	in.	in.	[mm]	in.	[mm]	in.	Dit
		[mm]					[mm]	
120100100000303	50		4	[100]	2 3/8	[60]		
120100120000300	50		4 3/4	[120]	3 1/8	[80]		
120100140000303	50		5 1/2	[140]	3 1/8	[80]		
120100160000303	50		6 1/4	[160]	4	[100]		
120100180000303	50		7 1/8	[180]	4	[100]		
120100200000303	50		7 7/8	[200]	4	[100]		
120100220000303	50	3/8 [10]	8 5/8	[220]	4	[100]	0.992 [25.2]	AW 50
120100260000303	50	[10]	10 1/4	[260]	4	[100]	[23.2]	
120100300000303	50		11 7/8	[300]	4	[100]		
120100360000303	50		14 1/4	[360]	4 3/4	[120]		
120100380000303	50		15	[380]	4 3/4	[120]		
120100400000303	50		15 3/4	[400]	4 3/4	[120]		
120100460000303	25		18 1/8	[460]	4 3/4	[120]		

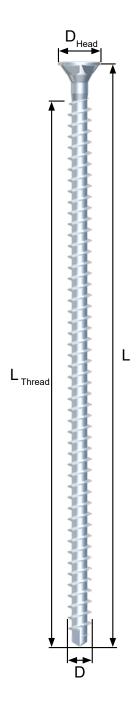

Item#	Box size	D	L		L _{Th}	read	D _{Head}	D:t
#	nioooo	in.	in.	[mm]	in	[mm]	in.	Bit
#	pieces	[mm]	III.	[IIIIIII]	[mm] in.		[mm]	
120120020000300	25		7 7/8	[200]	4	[100]		
120120026000300	25		10 1/4	[260]	4 3/4	[120]		
120120040000300	25	1/2 [12]	15 3/4	[400]	5 3/4	[145]	1.157 [29.4]	AW 50
120120048000300	25	[12]	19	[480]	5 3/4	[145]	[20.7]	
120120052000300	25		20 1/2	[520]	5 3/4	[145]		


Notes:

1. For more ASSY fastener options, visit the MTC Solutions Website at mtcsolutions.com.

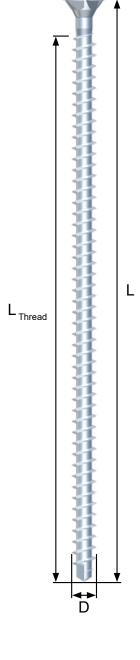
ASSY Kombi

Item#	Box size	D	L	-	L Th	nread	D _{Head}	D.;
#	pieces	in. [mm]	in.	[mm]	in.	[mm]	in. [mm]	Bit
130080060000103	75		2 3/8	[60]	1 1/2	[40]		
130080080000103	75		3 1/8	[80]	2	[50]		
130080100000103	75	5/16	4	[100]	2 3/8	[60]	0.472	AW 40 or
130080120000103	75	[8]	4 3/4	[120]	3 1/8	[80]	[12]	1/2 socket
130080160000103	75		6 1/4	[160]	3 1/8	[80]		
130080200000103	75		7 7/8	[200]	3 1/8	[80]		
130100060000103	50		2 3/8	[60]	2	[50]		
130100080000103	50		3 1/8	[80]	2	[50]		
130100100000103	50	0.00	4	[100]	2 3/8	[60]		414.40
130100120000103	50	3/8 [10]	4 3/4	[120]	3 1/8	[80]	0.591 [15]	AW 40 or 19/32 socket
130100140000103	50	[[]	5 1/2	[140]	3 1/8	[80]		10/02 300ket
130100160000103	50	6 1/4 [160] 4 [100]						
130100200000103	50		7 7/8	[200]	4	[100]		
130120080000103	50		3-1/8	[80]	2-3/4	[70]		
130120100000103	50		4	[100]	2 3/8	[60]		
130120120000103	50	1/2	4 3/4	[120]	3 1/8	[80]	0.669	AW 40 or
130120140000103	50	[12]	5 1/2	[140]	3 1/8	[80]	[17]	11/16 socket
130120160000103	50		6 1/4	[160]	5 3/4	[145]		
130120200000103	50		7 7/8	[200]	4	[100]		


L

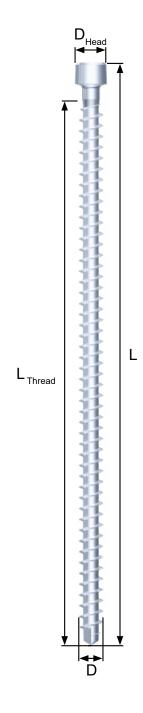
Notes:

1. For more ASSY fastener options, visit the MTC Solutions Website at mtcsolutions.com.


ASSY VG CSK

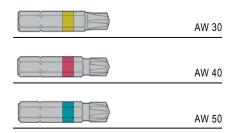
Item#	Box size		D	L		L _{Thre}	ead	D _{Head}	D.						
#	pieces		in.	in.	[mm]	in.	[mm]	in.	Bit						
#	pieces		[mm]	111.	[IIIIIII]	111.	[mm]	[mm]							
140080080000102	75			3-1/8	[80]	2-1/2	[61]								
140080120000102	75			4-3/4	[120]	4	[103]								
140080140000100	75			5-1/2	[140]	4-7/8	[123]								
140080160000102	75			6-1/4	[160]	5-5/8	[143]								
140080180000102	75		F/40	7-1/8	[180]	6-3/8	[163]	0.504							
140080200000102	75		5/16 [8]	7-7/8	[200]	7-1/4	[183]	0.591 [15]	AW 40						
140080220000102	75		[0]	8-5/8	[220]	8	[203]	[.0]							
140080240000102	75			9-1/2	[240]	8-3/4	[223]								
140080260000102	75			10-1/4	[260]	9-5/8	[243]								
140080280000102	75			11	[280]	10-3/8	[263]								
140080300000102	75			11-7/8	[300]	11-1/8	[283]								
140100100000102	50			4	[100]	3	[77]								
140100160000102	50				6 1/4	[160]	5 3/4	[145]							
140100180000102	50			7 1/8	[180]	6 1/2	[165]								
140100200000102	50			7 7/8	[200]	7 1/4	[185]								
140100220000102	50			8 5/8	[220]	8 1/8	[205]								
140100240000102	50			9 1/2	[240]	8 7/8	[225]								
140100260000102	50										10 1/4	[260]	9 5/8	[245]	
140100300000102	50			11 7/8	[300]	11 1/4	[285]								
140100320000102	50			12 5/8	[320]	12	[305]								
140100340000102	50		3/8 [10]	13 3/8	[340]	12 3/4	[325]	0.728 [18.5]	AW 50						
140100360000102	50		[10]	14 1/4	[360]	13 5/8	[345]	[10.0]							
140100400000102	50			15 3/4	[400]	15 1/8	[100]								
140100430000102	25			17	[430]	16 3/8	[415]								
140100480000102	25			19	[480]	18 1/4	[465]								
140100530000102	25			20 7/8	[530]	20 1/8	[512]								
140100580000102	25			22 7/8	[580]	22 1/8	[562]								
140100650000102	25			25 5/8	[650]	24 7/8	[632]								
140100750000102	25			29 1/2	[750]	28 7/8	[732]								
140100800000102	25			31 1/2	[800]	30 3/4	[782]								

Notes:
1. For more ASSY fastener options, visit the MTC Solutions Website at mtcsolutions.com.


Item#	Box size	D	L		L _{Thre}	ead	D _{Head}	Dit
#	niagon	in.	in.	[mm]	in.	[mm]	in.	Bit
#	pieces	[mm]	111.	[mm]	111.	[mm]	[mm]	
140120120000102	50		4 3/4	[120]	4 1/8	[105]		
140120140000100	50		5 1/2	[140]	4 7/8	[125]		
140120160000102	50		6 1/4	[160]	5 3/4	[145]		
140120200000102	50		7 7/8	[200]	7 1/4	[185]		
140120260000102	50	1/2	10 1/4	[260]	9 5/8	[245]	0.885	AW 50
140120280000102	50	[12]	11	[280]	10 4/9	[265]	[22.5]	AVV 50
140120300000102	50		11 7/8	[300]	11 1/4	[285]		
140120380000102	50		15	[380]	14 3/8	[365]		
140120480000102	50		19	[480]	18 1/4	[465]		
140120600000102	50		23 5/8	[600]	23	[585]		

Notes:
1. For more ASSY fastener options, visit the MTC Solutions Website at mtcsolutions.com.

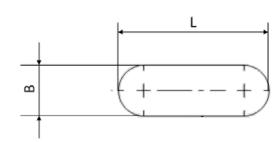
ASSY VG Cyl


Item#	Box size	D	L		L _{Thr}	ead	D _{Head}	B.:
#	pieces	in. [mm]	in.	[mm]	in.	[mm]	in. [mm]	Bit
150060080000302	100		3 1/8	[80]	2 7/8	[73]		
150060100000302	100		4	[100]	3 5/8	[93]		
150060120000302	100		4 3/4	[120]	4 1/2	[113]		
150060140000302	100	1/4	5 1/2	[140]	5 1/4	[133]	0.323	AW 30
150060160000302	100	[6]	6 1/4	[160]	6	[153]	[8.2]	
150060180000302	100		7 1/8	[180]	6 3/4	[173]		
150060200000302	100		7 7/8	[200]	7 5/8	[193]		
150080160000302	50		6 1/4	[160]	5 5/8	[144]		
150080180000302	50		7 1/8	[180]	6 1/2	[164]		
150080200000302	75		7 7/8	[200]	7 1/4	[184]		
150080220000302	75		8 5/8	[220]	8	[204]		
150080240000302	75		9 1/2	[240]	8 7/8	[224]		
150080260000302	75		10 1/4	[260]	9 5/8	[244]		
150080280000302	75		11	[280]	10 3/8	[264]		
150080300000302	75	5/16 [8]	11 7/8	[300]	11 1/8	[284]	0.394 [10]	AW 40
150080330000302	50	[0]	13	[330]	12 3/8	[314]	[10]	
150080360000302	50		14 1/4	[360]	13 1/2	[344]		
150080380000302	50		15	[380]	14 3/8	[364]		
150080430000302	25		17	[430]	16 1/4	[414]		
150080480000302	25		19	[480]	18 1/4	[464]		
150080530000302	25		20 7/8	[530]	20 1/4	[514]		
150080580000302	25		22 7/8	[580]	22 1/4	[564]		
150100180000302	50		7 1/8	[180]	6 1/2	[165]		
150100220000302	50		8 5/8	[220]	8 1/8	[205]		
150100260000302	50		10 1/4	[260]	9 5/8	[245]		
150100300000302	50		11 7/8	[300]	11 1/4	[280]		
150100340000302	50		13 3/8	[340]	12 3/4	[325]		
150100360000302	50		14 1/4	[360]	13 5/8	[345]		
150100400000302	50		15 3/4	[400]	15	[380]	0.500	
150100430000302	25	3/8 [10]	17	[430]	16 3/8	[415]	0.528 [13.4]	AW 50
150100480000302	25	[]	19	[480]	18	[456]	[]	
150100530000302	25		20 7/8	[530]	19 7/8	506]		
150100580000302	25		22 7/8	[580]	21 7/8	[556]		
150100650000302	25		25 5/8	[650]	24 5/8	[656]		
150100700000302	25		27 5/8	[700]	26 3/4	[680]		
150100750000302	25		29 1/2	[750]	28 5/8	[726]		
150100800000302	25		31 1/2	[800]	30 5/8	[780]		

^{1.} For more ASSY fastener options, visit the MTC Solutions Website at <u>mtcsolutions.com</u>.

Bits - AW Drive

AW Bits are engineered and patented for proper installation of all ASSY screws and offer exceptional fit and durability. They are available in three standard sizes.


45° Washer

The 45° wedge washer is a cast-iron part suitable for use with all ASSY Countersunk head screw types. Use of the washer eliminates the need for inclined predrilled countersunk holes in steel plates and thus offers cost reductions by using standard machined elliptical holes and thinner steel plates. The possibility of setting a wood screw with its washer at a 45° angle enables engineers and designers to achieve high-performance connection systems.

Table W.1, 45° Washer Installation - Geometry Requirements

Screw Diameter	E	3	ı	-	Steel Plate Thickness			
	min	max	min	max	min	max		
		i	n.					
		[m	nm]					
5 / 16"	0.394	0.433	1.26	1.299	0.157	0.591		
[8]	[10]	[11]	[32]	[33]	[4]	[15]		
3 / 8"	0.433	0.472	1.732	1.772	0.197	0.787		
[10]	[11]	[12]	[44]	[45]	[5]	[20]		
1 / 2"	0.512	0.551	1.969	2.008	0.236	0.934		
[12]	[13]	[14]	[50]	[51]	[6]	[25]		

Notes:

Drill recommendation

Use low rpm drill with high torque:

- ½ drill for 1/4" [6mm] and 5/16" [8mm] screws
- ¾ drill for 3/8" [10mm] and 1/2" [12mm] screws

Avoid use of impact drills, do not over-torque. Use AW drive bits for all ASSY screws.

Installation

- Do not stop drill during installation. ASSY screws shall be installed without stopping in one run.
- Use safety gear as required.
- Use drill with torque clutch when installing screws in steel-to-wood connections.

For coated steel plates the hole size needs to be oversized taking the thickness of the coating into account. Test
fitting of wedge washers into steel plate holes is required to assure required tolerances are in place.

info@mtcsolutions.com

1.866.899.4090

mtcsolutions.com

