MyTiCon Timber Connectors Webinar

Fire Design for Beam Hanger Connections

Thursday May 2 @ 10:00AM PST | 1:00PM EST

Is Your Connection Fire Rated?

About MyTiCon

Your Host

• Neda Naderi, MEng, EIT

MyTiCon

• Specialized Mass Timber Connection Systems Supplier

Webinar Agenda

- Pre-engineered Beam Hanger
 - Overview
 - Advantages
 - Fire Testing
- Fire Design
 - Relevant Codes
 - Fire Design Example

Fire Rated Connections

- Drywall and wood cover
- Regular connections
- Pre-engineered Connections

Pre-Engineered Connection

Courtesy of: Oregon Forest Research Institute

Beam Hanger System

- Beam Hanger Webinar Part 1
- Answered:
 - What is the beam hanger?
 - Why use the beam hanger?
 - How to use the beam hanger?

Beam Hanger System

• Simple pre-engineered solution for Mass timber

MEGANT

Pre-engineered

- Tabulated Design values
- Clear and detailed instructions
- Installer-friendly tolerance

Pre-Installed

- Simple installation
- Controlled work environment
- Superior quality control

Drop-in Assembly

- Reduced crane time
- Reduced personnel
- No power tools required

Courtesy of: Oregon Forest Research Institute

Cost Effective

Beam Hanger

Custom Connector

Concealed

Concealed Options: Top View of a Purlin to Girder Connection

Concealed

Concealed Options: Side View of a Purlin to Girder Connection

 System positioning is important

• Placed in the lowest most section of the secondary member $(0.3 * d_{SM})$

Tested Solution

Fire Testing

- Full Scale Fire Testing in San Antonio
- In Partnership with:
 - Softwood Lumber Board
 - Arup
 - D.R. Johnson
- Certified 1.5h fire rating

SOLITHIMET RESEARCH INSTITUTE			
5225 CULEBRA RCAD 78236-5166 - PO DRAWER 26510 78226 0510 -	SAN ANTONIO, TEXAS, USA + (210) 80	4-5111 • WWW 3WRI DRS	-
CHEMISTRY AND CHEMICAL ENGINEERING DIVISION		FIRE TECHHOLOGY DEPARTMENT WWW.FIRE EMILORG FAX (210) 52-0577	
FIRE PERFORMANCE EVALUATION O GLULAM BEAM TO COLUMN CONNEC CLT PANEL, TESTED IN GENERAL ASTM E119-166, STANDARD TEST METH OF BUILDING CONSTRUCTION AND MAX	F A LOAD BEARING TION, INCLIDING A ACCORDANCE WITH ODS FOR FIRE TESTS TERIALS		
FINAL REPORT Consisting of 32 Pages			
SwRI [®] Project No. 01.22532.01.001 Test Date: March 6, 2017 Report Date: May 26, 2017			
Prepared for:			
Softwood Lumber Board 1101 K Street N.W., Suite 700 Washington, DC 20005			
Submitted by: BildBondl	Approved by Kaun (ann	
SC th Bill B. Bendele Principal Engineering Technologist	Karen C. Car Manager	penter, M.S., P.E.	

Fire Testing

- Comply with ASTM E119
- Constant Load During Testing
- Test Durations:
 - 60 minutes
 - 90 minutes

Test Setup

- Test duration: 90 minutes
- Screws embedded in char
- Codes provide conservative approaches for fire design

Courtesy of: Softwood Lumber Board

- Fire caulking used
- 1.5" from the beam edge
- No apparent effect on char layer

Beam Hanger System

- Pre-Engineered
- Pre-installed
- Cost-effective
- Concealed
- Fire Tested
 - Certified 1.5hour rating

How is Fire Design Done?

- Building codes used for reference
 - CAN: CSA 086 Annex B
 - USA: NDS
- AWC Technical Report 10

Timber Connection Country IBC **Building Code** NBC CSA-086 NDS Wood Design Standard Technical Report No. 10 **TR-10**

CSA-086

• Annex B:

Fire resistance of large crosssection wood elements

- One-dimensional char depth
- Linear char model

Linear Char vs. Nonlinear Char Model

- Linear Char Model
 - Short periods (<60minutes)
 - Long periods (>60minutes)

International Building Code

• IBC 2015 types of construction:

- 1. Non-combustible Construction Type I and II
- 2. Light Frame Wood Construction Type III and V
- 3. Heavy Timber Construction

IV HT

Noncombustible Construction

Light Frame Wood Construction

Light Frame Wood Construction

- Type III
 - |||-A
 - III-B

- Exterior walls
 - Non-combustible material
- Interior elements
 - Any material (per code)

Light Frame Wood Construction

- Type III
 - |||-A
 - III-B

- Type V
 - V-A
 - V-B

- Exterior walls
 - Non-combustible material
- Interior elements
 - Any material (per code)
- Structural Elements, Exterior and Interior Walls
 - Any Material (per code)

IBC 2021

- Height and Area Requirements
- Element Fire Protection

IBC 2021

	IV-A	IV-B	IV-C
Allowable Building Height	270'	180'	85'
Allowable Number of Stories	18	12	9
Allowable Area (ft ²)	324,000	216,000	135,000
Primary Structural Frame Fire Rating (hours)	3	2	2

Noncombustible Protection

- Unique requirement for Type IV
- Increase fire-resistance rating
- IBC 2021:
 - ¹/₂" Type X gypsum board (25min)
 - 5/8" Type X gypsum board (40min)

General FRR Requirements

- Type IV-A
 - No exposed mass timber
 - Non-combustible protection on all elements
- Type IV-B
 - Some exposed mass timber
 - Area of ceilings < 20% of floor area
 - Area of walls < 40% of floor area

- Type IV-C
 - Exposed mass timber
 - Structural elements 2-hour FRR

Other Requirements

- Use of sealant at timber edges
- No exposed mass timber in:
 - Concealed spaces
 - Exit enclosures and elevator hoistways
- Use of sprinklers

Fire Design

42

Technical Report No.10

- American Wood Council
- Assist in fire design

Technical Report No.10

- Mass Timber is naturally fire resistant
- Maintains structural integrity through:
 - Char layer on outside

Fire Design Concept

- Initial Beam Width: B
- Initial Beam Depth: D
- Charred Beam Width: b_{char}
- Charred Beam Depth: d_{char}

Char Rate

- Nonlinear char rate model
- A function of:
 - Time, t
 - Reference nominal char rate, β_n
 - Nonlinear char constant, β_t

$$a_{char} = \beta_t t^{0.813}$$

- t= 1-Hour $a_{char} = 1.5$ inch
- t= 2-Hour $a_{char} = 2.6$ inch

Effective Char Depth

• For structural calculation:

 a_{eff} = 1.2 a_{char}

Connection Protection Performance

4.5.1 Connection Protection Performance

Protection of wood structural connections shall be designed to limit the average temperature rise to 250 °F (139 °C), and the maximum temperature rise at any point to 325 °F (181 °C), at the interface between the connection and the protection. Design of the protection shall be in accordance with the thermal separation provisions of 4.4.1.3 for wood protection and 4.4.2.3 for gypsum board protection.

Exception: Connections in assemblies tested in accordance with ASTM E119. For tested assemblies, an option for the preliminary design of the protection would be to limit the average temperature at the interface between the connection and the protection to the charring temperature

Corner Rounding Effect

- Charring faster in corners
- Cross-section no longer same
- Inner core at initial temperature
- Char layer thickness = r

 Corner rounding effect possibilities for small and big beam hangers

Char Contraction

Char contraction at unbonded

wood members

- Ends and edges
- Ignition extends into gaps
 - Twice the char depth, $2a_{char}$

Reference: TR10

Technical Report No.10

- Supplement to the NDS
- Step by step procedures
- Fire Design:
 - 1. Char rate
 - 2. Corner rounding effect
 - 3. Char contraction

Example - Fire Design

Example - Fire Design

Standard Connectors

Beam Hanger System

- 1 hr FRR connection fire design done in the TR10 using glulam size 6 ³/₄ x 13 ¹/₂ inches
- Simply supported glulam beam
- Loads:
 - M_{Max} = 30,375 ft-lb
 - V_{Max} = 6,750 lb

- For fire design check:
 - Section modulus
 - Shear Area
- For 2hr FRR:

$$a_{eff} = 3.2$$
 in

$$X_f = \frac{(6.75 - 6.4)(13.5 - 3.2)^2}{6} = 6.2 \text{ in}^2$$

beam size in TR10 too small for a 2hr fire rating, which we are aiming for in this example, therefore need to increase the beam size that can withstand a 2hr FRR

Increase beam size:

8 ³⁄₄ x 18

• Check moment and shear:

 $M_{f'}$ = 47,920 ft-lb > M_{Max} = 30,375 ft-lb

 $V_{f'}$ = 25,354 lb > V_{Max} = 6,750 lb

- 8³/₄ x 18 Glulam Beam
- Internal Bearing Connector
- 3.5" wide and 0.375" thick

- Maximum notch depth
 - Min {1/10*Beam Depth, 3"}
- Maximum notch depth: 1.8"
- Wood Plug:

$$t_p = 60(\frac{1.55}{1.5})^{1.23}$$
$$t_p = 62.46 min$$

Additional Wood Cover:

Clause 4.4.1.3

$$t_p = 0.85 * 60(\frac{1.55}{1.5})^{1.23} = 51$$
min
51min + 62 = 113 min

More Cover needed!!

• Cover on the side:

$$t_p = 60(\frac{2.62}{1.5})^{1.23}$$

 $t_p = 119 \min$

• Additional Cover:

$$t_p = 0.85 * 60(\frac{1.55}{1.5})^{1.23}$$

 $t_p = 51 \text{min}$

Unbonded Gaps

- Char contraction creating gaps
- Depth of gaps:

 $2a_{char}$

Additional cover needed!

 $d_{cover} + d_{strip} \ge 2a_{char}$

• Bottom of beam:

$$d_{strip} \ge (5.2 - 1.55 - 1.5 - 1.5)$$

 $\rightarrow d_{strip} \ge 0.65$ "

• Side of beam: $d_{strip} \ge (5.2 - 2.62 - 1.5)$ $\rightarrow d_{strip} \ge 1.08''$

Example – Beam Hanger System

- 8³/₄ x 18 Glulam Beam
- Shear load: 6,750 lbf.
- 2hr FRR

Beam Hanger - Selection Tool

	Minimum Beam Minimum B Width Depth		n Beam pth	Allowable Load										
			Kips							Connector				
	inch	[mm]	inch	[mm]	Kips		5 1	0	15	20	25	30		Page
			6-1/4"	[160]	1.2								Gigant 120x40	16
	2-3/8"	[60]	7-7/8"	[200]	1.9								Gigant 150x40	17
			8-3/4"	[222]	2.5								Gigant 180x40	18
-	4"	[100]	7"	[180]	3.7								Ricon S VS 140x60	20
			9-1/2"	[240]	5.2								Ricon S VS 200x60	22
			15-3/4"	[400]	8.2								Megant 310x60	30
			20-1/2"	[520]	12.8								Megant 430x60	32
			25-1/4"	[640]	12.8								Megant 550x60	34
		♦	9-1/2"	[240]	7.5								Ricon S VS 200x80	24
	4-3/4"	[120]	13"	[330]	9.1								Ricon S VS 290x80	26
			17"	[430]	17.1								Ricon XL 390x80	28
-	5-5/8"	[140]	15-3/4"	[400]	10.5								Megant 310x100	36
			20-7/8"	[530]	17.5								Megant 430x100	38
			25-5/8"	[650]	19.5								Megant 550x100	40
			15-3/4"	[400]	13.6								Megant 310x150	42
	7-1/2"	[190]	20-1/2"	[520]	22.7								Megant 430x150	44
			25-1/4"	[640]	31.8								Megant 550x150	46
			33-1/8"	[830]	32.6								Megant 730x150	48

RICON S VS 200 x 80

Connector Parameters and Dimensions

Beam Hanger - Fire Design

-

		Fire Resistance Rating									
			1 hour		2 hours						
Connector		Min. Beam Width (b) [in]	n Min. Beam a) Height (h) [in] [Min. Beam Width (b) [in]	Min. Beam Height (h) [in]	a _{sec} [in]				
	Single	6-1/4"	9-1/4"	1-1/2"	9-5/8"	14-1/4"	2-3/4"				
RICON S VS 140X60	Double	8-1/8"	11-7/8"	2"	10-1/2"	17-1/4"	3-5/8"				
RICON S VS 200x60	Single	5-1/4"	11-7/8"	2"	9-5/8"	14-1/4"	2-3/4"				
	Double	8-1/8"	11-7/8"	2"	10-1/2"	17-1/4"	3-5/8"				
RICON S VS 200x80	Single	6-1/8"	11-7/8"	2"	8-5/8"	17-1/4"	3-5/8"				
	Double	9-3/4"	11-7/8"	2"	12-1/8"	17-1/4"	3-5/8"				
RICON S VS 290x80	Single	6-1/8"	14-1/4"	2"	8-5/8"	17-1/4"	3-5/8"				
	Double	9-3/4"	14-1/4"	2"	12-1/8"	17-1/4"	3-5/8"				
RICON XL 390x80	Single	6-1/8"	18-1/4"	2"	8-5/8"	19-3/4"	3-5/8"				
	Double	9-3/4"	18-1/4"	2"	12-1/8"	19-3/4"	3-5/8"				

Side View

Front View Secondary Member

Notes:

- 1. All minimum beam requirements account for the corner effect rounding when beams are designed for three-sided fire exposure.
- 2. Beam Hanger Systems must be installed with fire rated caulking within the non charring area.

Beam Hanger - Fire Design

- Values based on testing
- Provide sufficient wood cover
- Provide fire rated caulking

Fire Design Made Simple

Fire Design Made Simple

Standard Connectors

Beam Hanger System

Fire Design Made Simple

Standard Connectors

Beam Hanger System

Standard Connectors

Standard Connectors

Standard Connectors

Beam Hanger System

Side View

Standard Connectors

Standard Connectors

Standard Connectors

Standard Connectors

Standard Connectors

Standard Connectors

Standard Connectors

Standard Connectors

Beam Hanger System

Top View

Standard Connectors

Beam Hanger System

Top View

Future Testing

References

- WoodWorks Tall Wood Design Resources
 - Tall Wood Buildings in the 2021 IBC up to 18 Stories of Mass Timber (Scott Breneman WoodWorks, Matt Timmers John A.Martin & Associates, Dennis Richardson American Wood Council)
- American Wood Council
 - Calculating the Fire Resistance of Wood Members and Assemblies Technical Report No.10

You can contact us at:

Toll Free: 1.866.899.4090

Email: info@myticon.com

www.myticon.com

MyTiCon Timber Connectors | www.myticon.com | info@myticon.com | 1.866.899.4090