WOOD you like to CONNECT?

CONTACT US

Product Consultant
1.866.899.4090
info@my-ti-con.com

Technical Support
1.866.899.4090
support@my-ti-con.com

www.my-ti-con.com
Timber Concrete Composite (TCC) systems are usually a concrete slab connected to a wooden panel or beam. Composite action can be achieved through a mechanical connector, geometric interlocking or adhesive bonding. The use of TCC systems has been broadly investigated in a variety of different approaches, e.g. T-Beam configurations where an Engineered Wood Product (EWP) is used as the web member and the flange is composed out of concrete (Yeoh et al. 2010)\(^1\) and plate configurations (Gerber 2016)\(^3\). The use of TCC systems in existing buildings where the structure is not in compliance with modern design requirements has also been investigated. Often, the existing structure is composed out of timber sections and is able to carry additional load but an upgrade is required for serviceability, i.e. deflection and vibration (Cecotti 2002)\(^2\).

TCC systems positively contribute to an enhanced building performance under modern design considerations in three key-areas:

1. **Structural Performance** - Utilizing a TCC system combines the advantages of wood and concrete. Wood performs well in tension and concrete in compression. The behaviour of both material is well understood. With the appropriate shear connector, stringent ultimate limit state and serviceability limit state design requirements can be met with slender EWP elements and allow for efficient structural design. The composite action allows for narrow beam width and reduced beam depth which may reduce the building height, the overall building envelope and therefore construction and maintenance cost.

2. **Human comfort** - New or existing structures shall always consider how humans experience the structure they life or work in. Excessive floor vibrations may result in discomfort for occupants. TCC systems can help control floor vibrations and ultimately improve the building experience. Besides floor vibrations, the building climate also contributes to the well-being of building occupants. While a light wood frame structure generally has a low thermal mass and heats up or cools down quickly, a building using TCC floor systems has a higher thermal mass that advances human comfort.

3. **Fire performance** – In heavy timber buildings, fire safety is commonly addressed through concealing connection systems with a charring layer consisting out of wood. It is also possible to conceal a connector with a layer of concrete to avoid direct heat and/or fire exposure. In a TCC system where the shear connector is covered with wood and concrete, no extra measures for fire protection are required.

Designing an efficient TCC system requires a shear connector for which the stiffness value has been determined through testing. In an ideal world, an easy to install, cost efficient, off the shelf, standardized and approved shear connector is available. Approved and tested full-thread, self-tapping wood screws (STS) offer this opportunity. With the appropriate shear connector slender EWP elements such as Cross Laminated Timber (CLT) can satisfy stringent design requirements and allow for efficient structural design.

This paper presents findings from testing on TCC systems with EWP and STS as shear connector and provides a design example considering a TCC- T-section.
TCC systems are generally designed using the gamma method also called mechanically jointed beam theory. The design approach relies heavily on the shear connector stiffness to be known. If STS are used as shear connector it seems reasonable to use the existing test data and stiffness values to attempt the design of a TCC T-section beam. The concrete flange must act in compression and the timber web member must act in tension. The approach may be particularly valuable in upgrades of existing buildings where occupational demands impose larger loads or more comforting structural performance through deflection reduction and vibration control. A TCC beam system will:

- Help conserve the original timbers and may allow for larger loads on existing beam members while reducing original ceiling height minimally only.
- Optimizes mass - additional introduced load is much smaller when compared to a traditional concrete slab which reduces lateral loads and gravity load demands on existing foundations.
- Improved thermal mass performance of the building.

The design of a TCC T-beam must also consider the active width of the concrete flange $b_{1,\text{eff}}$. In [6] a theoretical approach is described referring to the relationship of the flange width with respect to the clear span of the beam.

For uniform loading:

$$b_{1,\text{eff}} = S \left(1 - 1.4 \left(\frac{S}{L}\right)^2\right)$$

For concentrated loading:

$$b_{1,\text{eff}} = 5 \left(1 - 1.4 \left(\frac{S}{L}\right)^2 - 0.8 \left(\frac{S}{L}\right)\right)$$

$S = \text{Spacing of timber girder and } L = \text{Clear span of the girder}$

Figure 1: Cross sectional stress distribution as per [7]
When designing TCC systems one of the most important input parameters to consider are the properties of the shear connector. In order to utilize standard, off the shelf code approved STS in TCC systems small and full scale tests have been conducted. The outcome of the testing provides information about the shear connector properties in Table 2. A variety of results were presented in one of our previous papers (Figure 2) however design parameters of TCC systems with a soft and lightweight interlayer (Figure 3) were not considered. The soft and light weight interlayer is constructed of rigid insulation material with 1” (25mm) thickness. The advantage is that beneficial cross sectional depth is added without adding much weight (besides other benefits). Since the STS screws are installed at an angle to the shear plane for optimal stiffness a normal clamping force is generated (Figure 3) which can compress/crush the soft and light weight interlayer. To avoid crushing a screw cross consisting out of two equivalent screws in opposite direction is installed.

Presented are the research results to address TCC systems with a 25mm thick interlayer.

Figure 2: STS @30° and 45° angle to the shear plane without interlayer as per [3] - dimensions in mm

Figure 3: STS @45° to the shear plane with interlayer as per [3] and resulting forces – dimensions in mm
Fasteners such as STS exercise a certain inelastic slip under loading. According to EN 26891 (CEN 1991)[4] loading to 40\% of the estimated failure load before loading to failure will allow to compute tangent stiffness that is not significantly impacted by the initial slip which would only be expected in a structure when loading is applied for the first time[3]. Details on respective derivations are provided in Table 1.

\textit{Table 1 : Design parameter derivations}[3]

<table>
<thead>
<tr>
<th>Description</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tangent stiffness at 40% of peak load (used for Serviceability Limit State)</td>
<td>$K_{0.4} = \frac{F_{0.4} - F_{0.1}}{\Delta_{0.4} - \Delta_{0.1}} \ [kN/mm]$</td>
</tr>
<tr>
<td>Tangent stiffness at 60% of peak load</td>
<td>$K_{0.6} = \frac{F_{0.6}}{\Delta_{0.6} - \Delta_{res}} \ [kN/mm]$</td>
</tr>
<tr>
<td>Tangent stiffness at 80% of peak load (used for Ultimate Limit State)</td>
<td>$K_{0.8} = \frac{F_{0.8}}{\Delta_{0.8} - \Delta_{res}} \ [kN/mm]$</td>
</tr>
<tr>
<td>Tangent stiffness at peak load</td>
<td>$K_{ult} = \frac{F_{ult}}{\Delta_{ult} - \Delta_{res}} \ [kN/mm]$</td>
</tr>
<tr>
<td>Peak load recorded</td>
<td>$F_{ult} \ [kN]$</td>
</tr>
<tr>
<td>Inelastic slip after loading to service level</td>
<td>$\Delta_{res} = \Delta_{0.4} - \frac{F_{0.4}}{K_{0.4}} \ [kN/mm]$</td>
</tr>
</tbody>
</table>

K = slip modulus in kN/mm

$F_{0.1}$ = 10\% of peak load, $F_{0.4}$ = 40\% of peak load, $F_{0.6}$ = 60\% of peak load, $F_{0.8}$ = 80\% of peak load

F_{ult} = Peak load recording

$\Delta_{0.1}$ = Displacement at 10\% of peak load, $\Delta_{0.4}$ = Displacement at 40\% of peak load

$\Delta_{0.6}$ = Displacement at 60\% of peak load, $\Delta_{0.8}$ = Displacement at 80\% of peak load

Δ_{res} = Recorded inelastic slip after service load application

Δ_{ult} = Recorded ultimate displacement

\textit{Figure 4: Graphical display of design parameter derivation as per [3]}
Small scale testing was required to determine the shear connector performance values for TCC design (Figure 5). From this test setup the design parameters presented in Table 2 were derived.

![Figure 5: Test Setup of the Shear Test: schematic (left) and picture (right) as per [3]](image)

Table 2: Summary of Small Scale Test Results for pair of STS @45° [3]

<table>
<thead>
<tr>
<th>Connector description (results per pair of screws)</th>
<th>EWP</th>
<th>F_{ult} (kN)</th>
<th>Δ_{res} (mm)</th>
<th>Average Recorded Stiffness</th>
<th># of tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSY fully threaded VG Pair 10 x 200 @ 45°</td>
<td>LSL</td>
<td>49</td>
<td>0.06</td>
<td>$K_{0.4}$ (kN/mm) 74.4 $K_{0.8}$ (kN/mm) 41 K_{ult} (kN/mm) 19.2</td>
<td>6</td>
</tr>
<tr>
<td>ASSY fully threaded VG Pair 10 x 220 @45° + 25 mm Insulation</td>
<td>30</td>
<td>0.01</td>
<td>61.7 38.8 26.9</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>ASSY fully threaded VG Pair 10 x 200 @ 45°</td>
<td>LVL</td>
<td>34.9</td>
<td>0.14</td>
<td>55.6 30.2 10.3</td>
<td>6</td>
</tr>
<tr>
<td>ASSY fully threaded VG Pair 10 x 220 @45° + 25 mm Insulation</td>
<td>26.3</td>
<td>0.03</td>
<td>47.3 35.1 38.2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>ASSY fully threaded VG Pair 10 x 200 @ 45°</td>
<td>CLT</td>
<td>30.6</td>
<td>0.13</td>
<td>67.5 22.4 8.8</td>
<td>6</td>
</tr>
<tr>
<td>ASSY fully threaded VG Pair 10 x 220 @45° + 25 mm Insulation</td>
<td>CLT</td>
<td>23.6</td>
<td>0.07</td>
<td>42.8 24.9 18.1</td>
<td>5</td>
</tr>
</tbody>
</table>

LSL = Laminated Strand Lumber, LVL = Laminated Veneer Lumber

F_{ult} = Recorded peak load

Δ_{res} = Recorded inelastic slip after loading of specimen to service level load

$K_{0.4}$, $K_{0.8}$, K_{ult} as outlined in Table 1
A design example of a TCC-T beam is presented on the following pages. A summary of the results and possibilities in reducing deflection and timber cross section are presented in Table 3 and Table 4. Based on the boundary conditions used in the design example it seems possible to reduce deflections while reducing the required timber cross sections.

Table 3: Estimate—Comparing T-Beam without composite action and TTC T-Beam system

<table>
<thead>
<tr>
<th>Description: GL D-Fir L 20f E Beam, Clear Span 11.50 m, Spacing 2.40m & Live Load 4.8 kpa</th>
<th>Floor system without composite action</th>
<th>TTC T-Beam system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete flange 150 mm + T&G 50.8 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dead Load of the floor system kN/m²</td>
<td>5.94</td>
<td></td>
</tr>
<tr>
<td>GL cross-section b₂ x h_wood: (mm)</td>
<td>365 x 760</td>
<td></td>
</tr>
<tr>
<td>Deflection Live Load: Δ₃₆₀ (mm)</td>
<td>25.35</td>
<td>8.15</td>
</tr>
<tr>
<td>Deflection Dead Load +Live Load: Δ₁₈₀ (mm)</td>
<td>56.70</td>
<td>18.23</td>
</tr>
<tr>
<td>Estimated Natural Frequency: fn (Hz)</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 4: Comparison—T-Beam without composite action and TTC T-Beam system

<table>
<thead>
<tr>
<th>Description: GL D-Fir L 20f E Beam, Clear Span 11.50 m, Spacing 2.40m & Live Load 4.8 kpa</th>
<th>T-Beam without composite action</th>
<th>TTC T-Beam system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete 150 mm + T&G 50.8 mm</td>
<td>Concrete 125 mm + T&G 50.8mm</td>
<td></td>
</tr>
<tr>
<td>Dead Load of the floor system kN/m²</td>
<td>5.94</td>
<td>5.07</td>
</tr>
<tr>
<td>GL cross-section b₂ x h_wood: (mm)</td>
<td>365 x 760</td>
<td>265 x 608</td>
</tr>
<tr>
<td>Deflection Live Load: Δ₃₆₀ (mm)</td>
<td>25.35</td>
<td>17.85</td>
</tr>
<tr>
<td>Deflection Dead Load +Live Load: Δ₁₈₀ (mm)</td>
<td>56.70</td>
<td>36.71</td>
</tr>
<tr>
<td>Estimated Natural Frequency: fn (Hz)</td>
<td>4</td>
<td>5.3</td>
</tr>
</tbody>
</table>

Figure 6: Project example TCC system utilizing STS @ 30° (photo credit Western Archrib—Structural Wood Systems)
Note to the designer: The calculations provided in this example are sample calculations only! Under no conditions shall they be viewed as a generally valid design guideline. It remains the responsibility of a qualified design professional to design a TCC system to the specifics of a project and in compliance with local design standards.

![Cross section Timber Concrete Beam](image)

Figure 7: Timber Concrete Composite Section—T-Beam

1.0 Geometry of Timber Concrete Composite section

<table>
<thead>
<tr>
<th>Thickness of layer</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_{conc}</td>
<td>125</td>
<td>[mm]</td>
</tr>
<tr>
<td>h_b</td>
<td>50.8</td>
<td>[mm]</td>
</tr>
<tr>
<td>h_{wood}</td>
<td>608</td>
<td>[mm]</td>
</tr>
<tr>
<td>h_{tot}</td>
<td>783.8</td>
<td>[mm]</td>
</tr>
</tbody>
</table>

note: $b_1 < b_{1,\text{eff}}$ conservative estimate

$$b_{1,\text{eff}} = S \left(1 - 1.4 \left(\frac{S}{L} \right)^2 \right)$$

$$b_{1,\text{eff}} = 2400 \left(1 - 1.4 \left(\frac{2400}{11,500} \right)^2 \right)$$

<table>
<thead>
<tr>
<th>$b_{1,\text{eff}}$</th>
<th>2,254</th>
<th>[mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>2,400</td>
<td>[mm]</td>
</tr>
<tr>
<td>L</td>
<td>11,500</td>
<td>[mm]</td>
</tr>
<tr>
<td>b_2</td>
<td>265</td>
<td>[mm]</td>
</tr>
</tbody>
</table>

According to Dragošlav Stojie, Radovan Cvekowie, the active width of slab for uniform loading \[6\]

Spacing of glulam girders

Clear span of single beam, (assuming simple span)

Width of the glulam beam
2.0 Geometrie of Timber composite Section

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight:</td>
<td>337 [kg/m³]</td>
</tr>
<tr>
<td>Effective weight of floor system</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>[\frac{b_{\text{con}}}{1000} + \frac{h_{\text{wood}}}{1000} \times \frac{b_{1}}{1000} \times \frac{5.5 \text{ kn}}{\text{m}^3} \times \frac{m}{5}] (100)</td>
</tr>
</tbody>
</table>

Concrete Material Properties:*

\(f'_c = 30 \text{ [MPa]} \) Specified compressive strength of concrete at 28 days

\(f_r = 3.286 \text{ [MPa]} \) Factored Concrete Strength CSA A23.3 (art. 8.4.2) \[^{[13]}\]

\[f_r = 0.6 \sqrt{f'_c} = 0.6 \sqrt{30} \text{MPa} \]

\(E_c = 24,648 \text{ [MPa]} \) Modulus of Elasticity CSA A23.3 (art. 8.6.2.3)

\[E_c = 4500 \sqrt{f'_c} = E_c = 4500 \sqrt{30} \text{MPa} \]

\(A_c = 187,500 \text{ [mm}^2\] Cross sectional area of Concrete topping

\[A_c = b_1 \times h_c = 1,500 \text{. (125)} \]

\(I_c = 2.44E+08 \text{ [mm}^4\] Moment of Inertia of Concrete Topping

\[I_c = \frac{b_1 \times h_c^3}{12} = \frac{1500^{(125)^2}}{12} \]

\(E_{\text{wood}} = 12,400 \text{ [MPa]} \) Modulus of Elasticity of Glued laminated timber Douglas Fir-L 20f-E

\(E_{\text{eff}} = 6.15E+13 \text{ [N-mm}^2\] Effective Bending Stiffness of the glued laminated timber beam

\(A_{\text{wood}} = 161,120 \text{ [mm}^2\] Cross sectional area of glulam beam

\[A_{\text{wood}} = b_2 \times h_{\text{wood}} = 608 \text{. (265)} \]

\(I_{\text{wood}} = 4.96E+09 \text{ [mm}^4\] Moment of Inertia of glued-laminated timber

\[I_{\text{wood}} = \frac{b_2 \times h_{\text{wood}}^3}{12} = \frac{265 \times (608)^3}{12} \]

\(F_b = 19.2 \text{ [MPa]} \) Factored Bending Strength, for glued laminated timber

\(F_{\text{tn}} = 20.4 \text{ [MPa]} \) Factored Tension Strength, for glued laminated timber

\(F_r = 2 \text{ [MPa]} \) Factored Longitudinal shear for glued laminated timber

note: assume standard condition for glulam resistance factors (= 1)
3.0 Mechanical Properties for ASSY VG Cyl 10x240mm screw as Shear Connector:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>10</td>
<td>mm</td>
<td>Outside thread diameter</td>
</tr>
<tr>
<td>lox</td>
<td>240</td>
<td>mm</td>
<td>Total screw length</td>
</tr>
<tr>
<td>lef</td>
<td>170</td>
<td>mm</td>
<td>Effective penetration length</td>
</tr>
<tr>
<td>a</td>
<td>30</td>
<td>°</td>
<td>Angle of axis of screw to shear plane</td>
</tr>
<tr>
<td>nr</td>
<td>2</td>
<td></td>
<td>Number of rows (per beam)</td>
</tr>
<tr>
<td>se</td>
<td>150</td>
<td>mm</td>
<td>Spacing of screws at ends</td>
</tr>
<tr>
<td>sm</td>
<td>300</td>
<td>mm</td>
<td>Spacing of screws at midspan</td>
</tr>
</tbody>
</table>

\[S_{ef} = 0.75 \, se + 0.25 \, sm = 0.75 \, (150 \, mm) + 0.25 \, (300 \, mm) \]
according to Ceccatti (2002)

\[S_{ef} = 187.5 \, mm \]
Effective spacing of screws

\[K_{def,c} = 2.5 \]
Deformation factor for long term loading for concrete

\[K_{def,t} = 0.6 \]
Deformation factor for long term loading for timber

\[K_{def,sts} = 0.6 \]
Deformation factor for long term loading for STS (EN-1995, Appendix B)

\[\psi_2 = 0.3 \]
Stiffness reduction for ULS for long term loading (EN-1995, Appendix B)

3.1 Connector Specific Design Parameters (from test results):

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_{SLS}</td>
<td>69,000</td>
<td>N/mm</td>
<td>Screw stiffness at SLS for short term loading</td>
</tr>
<tr>
<td>K_{ULS}</td>
<td>19,600</td>
<td>N/mm</td>
<td>Screw stiffness at ULS for short term loading</td>
</tr>
<tr>
<td>Frx</td>
<td>34,400</td>
<td>N</td>
<td>Mean value for load carrying capacity of screw</td>
</tr>
</tbody>
</table>

3.2 Connector Stiffness Adjustment for Long Term Loading (EN1995):

\[K_{\text{ser},LT} = 43,125 \, [N/mm] \]
Adjusted screw stiffness at Servicability Limit State (SLS) for long term loading

\[K_{\text{CUR},LT} = \frac{K_{SLS}}{1 + K_{def,sts}} = \frac{69,000}{1 + 0.6} \]

\[K_{\text{ULS},LT} = 16,610 \, [N/mm] \]
Adjusted screw stiffness at Ultimate Limit State (ULS) for long term loading

\[K_{\text{ULS},LT} = \frac{K_{ULS}}{1 + (\psi_2 \cdot K_{def,sts})} = \frac{19,600}{1 + (0.3 \cdot 0.6)} \]

Note:

ULS: Ultimate Limit State
SLS: Serviceability Limit State
3.3 Modulus adjustment for long term loading

\[E_{1, \text{ULS,LT}} = 14,084 \, \text{[MPa]} \]
\[E_{1, \text{SL,S,LT}} = 7,042 \, \text{[MPa]} \]

for glued laminated timber

\[E_{2, \text{ULS,LT}} = 10,508 \, \text{[MPa]} \]
\[E_{2, \text{SL,S,LT}} = 7,750 \, \text{[MPa]} \]

4.0 Calculation of Gamma Factor for Composite Section (EN-1995, Appendix B)

ULS at Long Term Loading

\[\gamma_{1,\text{ULS}} = 0.697 \]

"Gamma" Factor for Composite Section (Shear Connector Reduction Factor)

\[\gamma_i = \left[1 + \pi^2 \frac{E_i A_i}{S_i/(n_r K_i L^2)}\right]^{-1} \quad \text{for} \ i=1 \text{ and } i=3 \]

\[\gamma_1 = \left[1 + \pi^2 \frac{E_{A_1,\text{ULS}} S_{\text{eff}}/(n_r K_{\text{ULS,LT}} L^2)}{}\right]^{-1} \]

\[\gamma_1 = \left[1 + \pi^2 \frac{(1.03E + 09) \cdot (187.5)/(2 \cdot (16,610) \cdot 11,500^2)}{}\right]^{-1} \]

Note: Full Composite action in TCC is achieved when the concrete slab and wooden beam are rigidly connected (\(\gamma = 1 \) full composite action) composite element 0 ≤ \(\gamma \) ≤ 1 (\(\gamma = 0 \) no composite action)

\[\gamma_2 = 1.0 \]

Assumption from EN-1995, Appendix B

\[E_{A,\text{ULS}} = 1.03E+09 \]

(Ceccotti; Gerber et. al)

\[(EA)_r = \frac{(E_1, A_1) \cdot (E_2, A_2)}{(E_1, A_1) + (E_2, A_2)} = \frac{(E_{1, \text{ULS}} A_1) \cdot (E_{2, \text{ULS}} A_2)}{(E_{1, \text{ULS}} A_1) + (E_{2, \text{ULS}} A_2)} \]

\[(EA)_r = \frac{(14,084) \cdot (187,500) \cdot (10,508) \cdot (161,120)}{(14,084) \cdot (187,500) + (10,508) \cdot (161,120)} \]

Note: (EI)_{eff} depends on the load distribution and span so it is not a fundamental cross-sectional property (Cecotti 2002)
\[a_{z, ULS} = 204.1 \quad [\text{mm}] \quad \text{Distance to centroid of Timber section from Neutral Axis} \]

\[a_{z, ULS} = \frac{(Y_{1, ULS}, E_{1, ULS}, A_{1}, (h_{\text{concrete}} + h_b, h_{\text{wood}}))}{(2, (Y_{1, ULS}, E_{1, ULS}, A_{1} + E_{2, ULS}, A_{2}))} \]

Note: \(h_{\text{total}} \) instead of \(h_1 + h_2 \)

\[a_{z, ULS} = \frac{(0.697 (14,084). (187,500). (125 + 50.8 + 608))}{2. (0.697 (14,084). (187,500) + (10,508). (161,120))} \]

\[a_{1, ULS} = 213.2 \quad [\text{mm}] \quad \text{Distance to centroid of Concrete section from Neutral Axis} \]

\[a_{1, ULS} = \frac{h_c}{2} + h_b + \frac{h_{\text{wood}}}{2} - a_{2, ULS} = \left(\frac{125}{2} + 50.8 + \frac{608}{2} \right) - 204.1 = 213.2 \]

Figure 8: Location estimate of the Neutral Axis in the TTC T-Beam system
MyTiCon Timber Connectors

Timber Concrete Composite Systems

TCC T-Beam example

\[E_{\text{eff,ULS}} = 2.10 \times 10^{14} \text{ [N-mm}^2]\] Effective Bending Stiffness of TCC System

\[(EI)_{ef} = \sum_{i=1}^{3} \left(E_i I_i + \gamma_i E_i A_i a_i^2 \right) \]

\[E_{\text{eff,ULS}} = (E_{1,ULS} A_1 + (Y_{1,ULS} E_{1,ULS} A_1)^2 + (E_{2,ULS} A_2)^2 + (E_{3,ULS} A_3)^2) \]

\[E_{\text{eff,ULS}} = (14,084),(2.44E+08) + 0.697 (14,084),(187,500),(213.2)^3 + (10,508),(4.96 E+09) + (10,508),(161,120),(204.1) \]

\[Y_{1,\text{SLS}} = 0.906 \] Shear Connector Reduction Factor at SLS

\[Y_{1,\text{SLS}} = \left[1 + \pi^2 (6.42E + 0.8), (187.5) / (2.43,125), (11,500)^2 \right]^{\frac{1}{2}} \]

\[E_{A,\text{SLS}} = 6.42 \times 10^8 \] (Cecotti; Gerber et al)

\[(EA)_{T,\text{SLS}} = \frac{(E_{1,\text{SLS}} A_1), (E_{2,\text{SLS}} A_2)}{(E_{1,\text{SLS}} A_1) + (E_{2,\text{SLS}} A_2)} \]

\[(EA)_{T} = \frac{(7,042), (187,500), (7,750), (161,120)}{(7,042), (187,500) + (7,750), (161,120)} \]

\[a_{2,\text{SLS}} = 191.7 \text{ [mm]} \] Distance to centroid of Timber section from Neutral Axis

\[a_{2,\text{SLS}} = \frac{(Y_{1,\text{SLS}} E_{1,\text{SLS}} A_1, (h_1 + h_2)}{(2.43,125), (11,500)^2} \]

Note: \(h \text{ total} \) instead of \(h_1 + h_2 \)

\[a_{2,\text{SLS}} = \frac{(0.906, (7,042), (187,500), (125 + 608 + 50.8))}{(2.43,125), (11,500) + (7,750), (161,120)} \]

\[a_{1,\text{SLS}} = 225.6 \text{ [mm]} \] Distance to centroid of Concrete section from Neutral Axis

\[a_{1,\text{ULS}} = \frac{h_c}{2} + \frac{h_b + h_{wood}}{2} - a_{2,\text{ULS}} = \left(\frac{125}{2} + 50.8 + \frac{608}{2} \right) - 191.7 = 255.6 \]

\[E_{\text{eff,ULS}} = 1.47 \times 10^{14} \text{ [N-mm}^2]\] Effective Bending Stiffness of TCC System

\[E_{\text{eff,ULS}} = (E_{1,\text{ULS}} A_1 + (Y_{1,\text{ULS}} E_{1,\text{ULS}} A_1)^2 + (E_{2,\text{ULS}} A_2)^2 + (E_{3,\text{ULS}} A_3)^2) \]

\[E_{\text{eff,ULS}} = (7,042),(2.44E+08) + 0.906 (7,042),(187,500),(225.6)^3 + (7,750),(4.96 E+09) + (7,750),(161,120),(191.7) \]
5.0 Loading Conditions for TCC System

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>2.40</td>
<td>[m] Spacing of glulam girders</td>
</tr>
<tr>
<td>b</td>
<td>1.50</td>
<td>[m] Effective width of slab</td>
</tr>
<tr>
<td>L</td>
<td>11.50</td>
<td>[m] Clear span of single beam, (assuming simple span)</td>
</tr>
<tr>
<td>w</td>
<td>0.37</td>
<td>[kPa] Weight of the glulam beam</td>
</tr>
<tr>
<td>F</td>
<td>1.70</td>
<td>[kPa] Partition wall + Tongue & groove board (50.8 mm) + electrical & mechanical</td>
</tr>
<tr>
<td>D</td>
<td>3.00</td>
<td>[kPa] concrete slab 125 mm</td>
</tr>
<tr>
<td>L</td>
<td>5.07</td>
<td>[kPa] DL of System + partition wall</td>
</tr>
<tr>
<td>L</td>
<td>4.80</td>
<td>[kPa] Live Load</td>
</tr>
<tr>
<td>w_{DL}</td>
<td>12.17</td>
<td>[kN/m] Unfactored uniformly distributed Dead Load</td>
</tr>
<tr>
<td>w_{LL}</td>
<td>11.52</td>
<td>[kN/m] Unfactored uniformly distributed Live Load</td>
</tr>
<tr>
<td>w_{ULS}</td>
<td>32.49</td>
<td>[kN/m] Total factored uniformly distributed load (ULS)</td>
</tr>
<tr>
<td>V_f</td>
<td>186,804</td>
<td>[N] Factored Shear Force</td>
</tr>
<tr>
<td>M_f</td>
<td>5.37E+08</td>
<td>[kN-mm] Factored Bending Moment (assuming simple span)</td>
</tr>
</tbody>
</table>

Calculations

\[
V_f = \frac{W_{ULS} \cdot L}{2} = \frac{32.49 \cdot 11.50}{2} \cdot 1000
\]

\[
M_f = \frac{W_{ULS} \cdot L^2}{8} = \frac{32.49 \cdot 11.50^2}{8} \cdot (1000)^2
\]

\[
\sigma_{N,c} = 5.36 \text{ [MPa]}\quad \text{max normal compressive stress in concrete section}
\]

\[
\sigma_{N,c} = \frac{V \cdot E_c \cdot a \cdot M_f}{(E I)_{ef}} = \frac{0.697 \cdot (7.04214 \cdot 0.084) \cdot (204.1) \cdot (5.37E+08)}{2.10E+14}
\]

\[
\sigma_{b,c} = 2.25 \text{ [MPa]}\quad \text{max bending stress in concrete section}
\]

\[
\sigma_{b,c} = \frac{0.5 \cdot E_c \cdot h_c \cdot M_f}{(E I)_{ef}} = \frac{0.5, (14,084) \cdot (125) \cdot (5.37E+08)}{2.10E+14}
\]
\[\sigma_{N,W} = 5.49 \text{ [MPa]} \quad \text{max normal tension stress in wood section} \]

\[\sigma_{b,W} = 8.18 \text{ [MPa]} \quad \text{max bending stress in wood section} \]

\[\tau_{W,max} = 1.73 \text{ [MPa]} \quad \text{max shear stress in wood section} \]

\[F_{2,max} = 20.11 \text{ [kN]} \quad \text{max load on fastener at section where shear force was computed} \]

6.0 Strength and Stiffness Checks

Deflection check

\[\Delta_{max} = 31.9 \text{ [mm]} \quad \text{max deflection allowed (L/360) under LL (11,500/360)} \]

\[\Delta_{LL} = 17.85 \text{ [mm]} \quad \text{max deflection at mid-span due to unfactored Live Loading} \]

\[\frac{L}{h} = 14.7 \quad \text{span-to-depth ratio of section} \]

Utilization Ratio

\[\Delta_{max} = 63.89 \text{ [mm]} \quad \text{max deflection due to unfactored Dead Load + Live Load (L/180)} \]

\[\Delta_{DL} = 36.71 \text{ [mm]} \quad \frac{5 \cdot WLL^3}{384 \cdot E \cdot I_{sl}} = \frac{5 \cdot (11.52 + 12.17) \cdot (11,500)^3}{384 \cdot (1.47 \cdot 10^{14})} \]

Utilization Ratio
Strength Checks:

Glulam:

\[\frac{\sigma_{\text{ub}}}{\phi_{FB}} = \frac{19.2}{8.18} \leq 1 \]

\[\phi_{FB} = 0.426 \text{ OK Utilization Ratio} \]

\[\phi_{Fr} = 0.269 \text{ OK Utilization Ratio} \]

\[\frac{\sigma_{W,fr}}{\phi_{Fr}} = \frac{20.4}{5.49} \leq 1 \]

Combined Stress Check

\[0.426 + 0.269 < 1 \]

Shear Resistance Check

\[\frac{V_{fr}}{V_{fr}} = \frac{2}{2} = 1 \]

\[\phi_{Vr} = 0.865 \text{ OK Utilization Ratio} \]

\[\frac{\tau_{2 \max}}{V_{fr}} = \frac{1.73}{2} < 1 \]

Shear Connector:

\[F_{rk} = 34.4 \text{ [kN] mean value for load carrying capacity of screw (from testing)} \]

\[\phi_{F_{rk}} = 0.585 \text{ OK Utilization Ratio} \]

\[\frac{F_{\max}}{F_{rk}} = \frac{20.11}{34.4} < 1 \]

Concrete:

\[\phi_{f_{c}} = 19.50 \text{ [MPa] Compressive strength of Concrete as per CSA-A23.3} \]

\[\frac{\sigma_{N, c} + \sigma_{B, c}}{\phi_{N, c}} = \frac{5.36 + 2.25}{19.50} < 1 \]
Figure 9: TCC Stress Distribution estimate
Vibration Check

\[W = 336.9 \, \text{[kg/m}^2\text{]} \quad \text{Effective Weight per area of Floor System} \]

\[m_{tcc} = 808.6 \, \text{[kg/m]} \quad \text{Mass per unit length (W.L) = (336.9) \times (2.40)} \]

\[M_{modal} = 4,650 \, \text{[kg]} \quad \text{generalized modal mass} \]

\[M_{modal} = \frac{m_{tcc}(l)}{2} = \frac{808.6 \times (11.50)}{2} \]

\[K = 5,176 \, \text{[N/mm]} \quad \text{generalized stiffness} \]

\[K_{tcc} = \frac{\pi^4 EI_{effTCC} \cdot L_{TCC}}{2L^3} \cdot 1.10 = \frac{\pi^4 (1.475 + 14)}{2 \times (11.500)^3} \cdot 1.10 \quad (1.10) \]

\[f_n = 5.3 \, \text{[Hz]} \quad \text{natural frequency} \]

\[f_n = \frac{1}{2 \pi} \cdot \left(\frac{\sqrt{K_{tcc}}}{M_{modal}} \right) = \frac{1}{2 \pi} \cdot \left(\sqrt{5.176} \right) \]

Outlook:

TCC systems in large wood structures may be used in a variety of different configurations. It may be possible to create a mass timber section consisting out of a GL beam, a mass timber panel and a concrete floor surface. The T– Timber section can be pre– manufactured in a shop with pre-installed connector mounted to the beams. After dropping the T section in place on site concrete can be poured.

Figure 10: TCC System with Mass Timber panel flange and concrete topping
REFERENCES:

[4] EN 26891 (CEN 1991) Timber Structures—Joints made with mechanical fasteners—general principles for the determination of strength and deformation characteristics

ACKNOWLEDGEMENTS:

Special thanks and gratitude is extended to Dr. Thomas Tannert and Adam Geber for their collaborative support in the development of this white paper.