Webinar Session 2/4: Basic Theory and Behavior of Inclined Screws
Webinar Session 2
Basic Theory and Behavior of Inclined Screws
Webinar Session 2
Basic Theory and Behavior of Inclined Screws

QTY = 6
Z = 3,000 lbs
Webinar Session 2
Basic Theory and Behavior of Inclined Screws

QTY = 6

Z = 3,000 lbs

QTY = 1
Webinar Session 2
Basic Theory and Behavior of Inclined Screws

Load-displacement relationship for Specimen 12-1

- $F_{\text{max}} = 128,300 \text{ lbs} @ 0.12^\circ$
- $570.1 \text{ kN} @ 3.0 \text{ mm}$
Keith Porter

Dalhousie University
-B.Eng. in Civil Engineering

MyTiCon Timber Connectors
-Research and Development
Outline:

• Theory of inclined screws
 • Axial vs dowel effects
• Behavior of inclined screws
 • Load-displacement relationship
 • Failure modes
• Design procedure for inclined screws
 • Simplified truss model
Webinar Session 2
Basic Theory and Behavior of Inclined Screws
Webinar Session 2
Basic Theory and Behavior of Inclined Screws
Webinar Session 2
Basic Theory and Behavior of Inclined Screws
Webinar Session 2
Basic Theory and Behavior of Inclined Screws
Allowable Tensile Strength

<table>
<thead>
<tr>
<th>Size</th>
<th>Allowable</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/16"</td>
<td>1,775 lbs</td>
</tr>
<tr>
<td>3/8"</td>
<td>2,550 lbs</td>
</tr>
<tr>
<td>1/2"</td>
<td>3,470 lbs</td>
</tr>
</tbody>
</table>

Factored Tensile Strength

<table>
<thead>
<tr>
<th>Size</th>
<th>Factored</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/16"</td>
<td>3,400 lbs</td>
</tr>
<tr>
<td>3/8"</td>
<td>4,300 lbs</td>
</tr>
<tr>
<td>1/2"</td>
<td>5,400 lbs</td>
</tr>
</tbody>
</table>
Webinar Session 2
Basic Theory and Behavior of Inclined Screws
Webinar Session 2
Basic Theory and Behavior of Inclined Screws
Webinar Session 2
Basic Theory and Behavior of Inclined Screws

![Diagram showing load-displacement relationship with F_{max} markers.]
Webinar Session 2

Basic Theory and Behavior of Inclined Screws

Mestek, P., Dietsch, P. (2011)
Webinar Session 2
Basic Theory and Behavior of Inclined Screws
Webinar Session 2
Basic Theory and Behavior of Inclined Screws

European Yield Model
Webinar Session 2
Basic Theory and Behavior of Inclined Screws

European Yield Model
Webinar Session 2
Basic Theory and Behavior of Inclined Screws
Webinar Session 2
Basic Theory and Behavior of Inclined Screws

Simplified Truss Model
$30^\circ \leq \beta \leq 45^\circ$
$30^\circ \leq \alpha \leq 90^\circ$

(Kevarinmäki, 2002)
Simplified Truss Model

$30^\circ \leq \beta \leq 45^\circ$

$30^\circ \leq \alpha \leq 90^\circ$

(Kevarinmäki, 2002)
Simplified Truss Model

$30^\circ \leq \beta \leq 45^\circ$

$30^\circ \leq \alpha \leq 90^\circ$

(Kevarimäki, 2002)
Webinar Session 2
Basic Theory and Behavior of Inclined Screws

Simplified Truss Model
$30^\circ \leq \beta \leq 45^\circ$
$30^\circ \leq \alpha \leq 90^\circ$

(Kevarinmäki, 2002)
Simplified Truss Model

$30^\circ \leq \beta \leq 45^\circ$

$30^\circ \leq \alpha \leq 90^\circ$
Webinar Session 2
Basic Theory and Behavior of Inclined Screws

Simplified Truss Model

30° ≤ β ≤ 45°
30° ≤ α ≤ 90°

(Kevarinmäki, 2002)
Webinar Session 2
Basic Theory and Behavior of Inclined Screws

(Kevarinmäki, 2002)
Webinar Session 2
Basic Theory and Behavior of Inclined Screws

Normal Force

Axial Component

Friction

Axial Force

Lateral Resistance

(Kevarinmäki, 2002)
Lateral Resistance = \min:\[
\text{ne}_f \cdot (\text{Withdrawal Resistance}) \cdot (\cos \beta + \mu \cdot \sin \beta)
\]
\[
\text{ne}_f \cdot (\text{Tensile Strength}) \cdot (\cos \beta + \mu \cdot \sin \beta)
\]
Normal Force
Axial Component
Friction
Axial Force

Friction
Lateral Resistance $= \min:\n\begin{align*}
&n_{ef} \cdot (\text{Withdrawal Resistance}) \cdot (\cos \beta + \mu \cdot \sin \beta) \\
&n_{ef} \cdot (\text{Tensile Strength}) \cdot (\cos \beta + \mu \cdot \sin \beta)
\end{align*}$

(Webinar Session 2
Basic Theory and Behavior of Inclined Screws

(Kevarimäki, 2002)
Webinar Session 2
Basic Theory and Behavior of Inclined Screws

\[
Lateral \ Resistance = \min:\left\{ \begin{array}{l}
 n_{ef} \cdot (\text{Withdrawal Resistance}) \cdot (\cos \beta + \mu \cdot \sin \beta) \\
 n_{ef} \cdot (\text{Tensile Strength}) \cdot (\cos \beta + \mu \cdot \sin \beta)
\end{array} \right.
\]

(Keverinmäki, 2002)
Normal Force

Axial Component

Friction

Lateral Resistance = min:

\[n_{ef} \cdot (\text{Withdrawal Resistance}) \cdot (\cos \beta + \mu \cdot \sin \beta) \]

\[n_{ef} \cdot (\text{Tensile Strength}) \cdot (\cos \beta + \mu \cdot \sin \beta) \]
Lateral Resistance = min:

\[n_{ef} \cdot (\text{Withdrawal Resistance}) \cdot (\cos \beta + \mu \cdot \sin \beta) \]

\[n_{ef} \cdot (\text{Tensile Strength}) \cdot (\cos \beta + \mu \cdot \sin \beta) \]
Webinar Session 2
Basic Theory and Behavior of Inclined Screws

Lateral Resistance = \(\min \left(n_{ef} \cdot (\text{Withdrawal Resistance}) \cdot (\cos \beta + \mu \cdot \sin \beta), \ n_{ef} \cdot (\text{Tensile Strength}) \cdot (\cos \beta + \mu \cdot \sin \beta) \right) \)

\[n_{ef} = \frac{F_{\text{multiple}}}{F_{\text{single}}} = 0.9 \cdot n \]

(Kearchromäki, 2002)
(Krenn & Schickhofer, 2009)
Webinar Session 2
Basic Theory and Behavior of Inclined Screws
Webinar Session 2
Basic Theory and Behavior of Inclined Screws
Webinar Session 2
Basic Theory and Behavior of Inclined Screws
Withdrawal resistance, side members
Withdrawal resistance, side members

Withdrawal resistance, main member
Withdrawal resistance, side members
Withdrawal resistance, main member
Tensile strength of the screws
Withdrawal resistance, side members

Withdrawal resistance, main member

Tensile strength of the screws
Webinar Session 2
Basic Theory and Behavior of Inclined Screws
Webinar Session 2
Basic Theory and Behavior of Inclined Screws

\[F_{\text{max}} = 28,200 \text{lbs} @ 0.09'' \quad (126\text{kN} @ 2.4\text{mm}) \]
Webinar Session 2
Basic Theory and Behavior of Inclined Screws
Webinar Session 2
Basic Theory and Behavior of Inclined Screws

Diagram showing the basic theory and behavior of inclined screws.
Withdrawal resistance, side members
Withdrawal resistance, side members

Withdrawal resistance, main member
Withdrawal resistance, side members
Withdrawal resistance, main member
Tensile strength of the screws
Withdrawal resistance, side members

Withdrawal resistance, main member

Tensile strength of the screws
F_{\text{max}} = 36,300\,\text{lbs} @ 0.09” (161.4\,\text{kN} @ 2.7\,\text{mm})
Webinar Session 2
Basic Theory and Behavior of Inclined Screws
Webinar Session 2
Basic Theory and Behavior of Inclined Screws
Webinar Session 2
Basic Theory and Behavior of Inclined Screws
Webinar Session 2
Basic Theory and Behavior of Inclined Screws

(Based on findings from Tomassi, Crosatti & Piazza, 2011)
Webinar Session 2

Basic Theory and Behavior of Inclined Screws
Simplified Truss Model

30° ≤ β ≤ 45°
30° ≤ α ≤ 90°
Webinar Session 2
Basic Theory and Behavior of Inclined Screws

Simplified Truss Model

\[30^\circ \leq \beta \leq 45^\circ \]

\[30^\circ \leq \alpha \leq 90^\circ \]
Simplified Truss Model

$30^\circ \leq \beta \leq 45^\circ$

$30^\circ \leq \alpha \leq 90^\circ$
Simplified Truss Model

$30^\circ \leq \beta \leq 45^\circ$

$30^\circ \leq \alpha \leq 90^\circ$
Webinar Session 2
Basic Theory and Behavior of Inclined Screws

(Kevarinmäki, 2002)
Webinar Session 2
Basic Theory and Behavior of Inclined Screws

Axial Force (Compression)
Axial Force (Tension)

Axial Components

(Kevarinmäki, 2002)
Webinar Session 2
Basic Theory and Behavior of Inclined Screws

Axial Components

Axial Force (Compression)

Axial Force (Tension)

β

Lateral Resistance

(Kevarinmäki, 2002)
Webinar Session 2
Basic Theory and Behavior of Inclined Screws

Axial Components

Axial Force (Tension) = \(\min \) Withdrawal Resistance

Axial Force (Tension) = \(\min \) Tensile Strength

Axial Force (Compression) = \(\min \) Withdrawal (Push-in) Resistance

Axial Force (Compression) = \(\min \) 0.8·Tensile Strength

(Kevarinmäki, 2002)
Axial Components

Axial Force (Tension) = \min\ [Withdrawal Resistance, Tensile Strength]

Axial Force (Compression) = \min\ [Withdrawal (Push-in) Resistance, 0.8 \cdot \text{Tensile Strength}]

(Keväinmäki, 2002)
Webinar Session 2
Basic Theory and Behavior of Inclined Screws
Webinar Session 2
Basic Theory and Behavior of Inclined Screws

F_{\text{max}} = 60,000lbs @ 0.08” (268kN @ 2.2mm)
Webinar Session 2
Basic Theory and Behavior of Inclined Screws

30° ≤ β ≤ 45°
Webinar Session 2
Basic Theory and Behavior of Inclined Screws

\[30^\circ \leq \alpha \leq 90^\circ \]
Loading parallel to grain
Webinar Session 2
Basic Theory and Behavior of Inclined Screws

Shearing joints
Geometry requirements
Symmetrical/
mutually parallel
Webinar Session 2
Basic Theory and Behavior of Inclined Screws

(Krenn & Schickhofer, 2009)
Webinar Session 2
Basic Theory and Behavior of Inclined Screws
Webinar Session 2
Basic Theory and Behavior of Inclined Screws

ICC-ES Report
DIVISION: 06 00 00—WOOD, PLASTICS AND COMPOSITES
SECTION: 06 05 23—WOOD, PLASTIC, AND COMPOSITE FASTENINGS

Evaluation Report CCMC 13677-R
SWG ASSY® VG Plus and SWG ASSY® 3.0 Self-Tapping Wood Screws

MASTERFORMAT: 06 05 23 14
Evaluation issued: 2013-11-20
Re-evaluated: 2017-12-22
Re-evaluation due: 2019-11-29
Webinar Session 2
Basic Theory and Behavior of Inclined Screws
Webinar Session 2
Basic Theory and Behavior of Inclined Screws

USA CLT Connections Design Guide
Now available
15% Discount Code
For attendees
Webinar Session 2.5/4
Advanced Theory and Behavior of Inclined Screws

\[Z'_{e} = \frac{(W'_{p})Z'}{(W'_{p})\cos^{2}\theta + Z'\sin^{2}\theta} \]
Thank you.

You can contact us at:
Call Toll Free: 1.866.899.4090
Email: info@myticon.com
www.myticon.com
Resources/Further Reading

