MyTiCon Timber Connectors | www.myticon.com

QTY = 6 Z = 3,000 lbs

QTY = 6 Z = 3,000 lbs QTY = 1

Keith Porter

Dalhousie University -B.Eng. in Civil Engineering

MyTiCon Timber Connectors -Research and Development

Outline:

Theory of inclined screws
Axial vs dowel effects

Behavior of inclined screws

- Load-displacement relationship
- Failure modes

Design procedure for inclined screws
Simplified truss model

8

European Yield Model

European Yield Model

Model 5° 0°

α

(Kevarinmäki, 2002)

24

Lateral Resistance = min: $n_{ef} \cdot (Withdrawal Resistance) \cdot (\cos\beta + \mu \cdot \sin\beta)$ $n_{ef} \cdot (Tensile Strength) \cdot (\cos\beta + \mu \cdot \sin\beta)$

Lateral Resistance = min:
$$\begin{bmatrix} n_{ef} \cdot (Withdrawal Resistance) \cdot (\cos\beta + \mu \cdot \sin\beta) \\ n_{ef} \cdot (Tensile Strength) \cdot (\cos\beta + \mu \cdot \sin\beta) \end{bmatrix}$$

Lateral Resistance = min:
$$\begin{bmatrix} n_{ef} \cdot (Withdrawal Resistance) \cdot (\cos\beta + \mu \cdot \sin\beta) \\ n_{ef} \cdot (Tensile Strength) \cdot (\cos\beta + \mu \cdot \sin\beta) \end{bmatrix}$$

Lateral Resistance = min: $\begin{bmatrix} n_{ef} \cdot (Withdrawal Resistance) \cdot (\cos\beta + \mu \cdot \sin\beta) \\ n_{ef} \cdot (Tensile Strength) \cdot (\cos\beta + \mu \cdot \sin\beta) \end{bmatrix}$

Lateral Resistance = min: $\begin{bmatrix} n_{ef} \cdot (Withdrawal Resistance) \cdot (\cos\beta + \mu \cdot \sin\beta) \\ n_{ef} \cdot (Tensile Strength) \cdot (\cos\beta + \mu \cdot \sin\beta) \end{bmatrix}$

Lateral Resistance = min:

$$n_{ef} \cdot (Withdrawal Resistance) \cdot (\cos\beta + \mu \cdot \sin\beta)$$

$$n_{ef} \cdot (Tensile Strength) \cdot (\cos\beta + \mu \cdot \sin\beta)$$

$$n_{ef} = \frac{F_{multiple}}{F_{single}} = 0.9 \cdot n$$

$$(Kevarinmäki, 2002)$$

$$(Krenn \& Schickhofer, 2009) 37$$

Withdrawal resistance, side members

Withdrawal resistance, main member

Withdrawal resistance, main member

Tensile strength of the screws

s **(**

Withdrawal resistance, main member

Tensile strength of the screws

Withdrawal resistance, main member

Withdrawal resistance, main member

Tensile strength of the screws

Withdrawal resistance, side members

Withdrawal resistance, main member

Tensile strength of the screws

67

$30^{\circ} \le \alpha \le 90^{\circ}$

Loading parallel to grain

Shearing joints

Geometry requirements

Symmetrical/ mutually parallel

Side View

End View

CONSTRUCTION

Evaluation Report CCMC 13677-R SWG ASSY[®] VG Plus and SWG ASSY[®] 3.0 Self-Tapping Wood Screws

MASTERFORMAT:	06 05 23.14
Evaluation issued:	2013-11-20
Re-evaluated:	2017-12-22
Re-evaluation due:	2019-11-20

Thank you.

MyTiCon Timber Connectors

You can contact us at: Call Toll Free: 1.866.899.4090 Email: info@myticon.com www.myticon.com

Resources/Further Reading

