WELCOME and THANK YOU for joining

Performance of CLT Connections under Dynamic Loading

We will get started shortly 10.05 PST 1.05 EST

Performance of CLT Connections under Dynamic Loading

Presenter:Max ClosenBackground:Timber Engineering

Performance of CLT Connections under Dynamic

The webinar outlook:

- Refresher: Performance of CLT connections under *Static* loading
- Performance of CLT connections under *Cyclic* loading
- Summary of proposed design procedures and design values

<u>Outline</u>

- Test Campaign #1 Static Loading
 - Panel to Panel Connections
 - Surface Spline, Half Lapped & Butt Joint Connections
- Test Campaign #2 Cyclic Loading
 - Panel to Panel Connections
 - Surface Spline, Half Lapped & Butt Joint Connections
- Test Data and Results
 - Statistics
 - Failure Modes
 - Proposed Design Methods/Values

<u>Outline</u>

- Test Campaign #1 Static Loading
 - Panel to Panel Connections
 - Surface Spline, Half Lapped & Butt Joint Connections
- Test Campaign #2 Cyclic Loading
 - Panel to Panel Connections
 - Surface Spline, Half Lapped & Butt Joint Connections
- Test Data and Results
 - Statistics
 - Failure Modes
 - Proposed Design Methods/Values

<u>Outline</u>

- Test Campaign #1 Static Loading
 - Panel to Panel Connections
 - Surface Spline, Half Lapped & Butt Joint Connections
- Test Campaign #2 Cyclic Loading
 - Panel to Panel Connections
 - Surface Spline, Half Lapped & Butt Joint Connections

Test Data and Results

- Statistics
- Failure Modes
- Proposed Design Methods/Values

Materials presented are for informational purpose only

but

Verification of existing or future code provisions for CLT connections through this small sample test series

Panel to Panel Connections

Test Campaign #1 Static Loading

Surface Spline Joints

Half Lapped Joints

Butt Joints

Specimen List:

Label	Туре	STS Ø [in]	STS Length [in]	Angle [º]	Replicates	# STS per Shear Plane	STS action	
Series 1 – SS_90_3ply			2 1/0		6		1 Anna	
Series 1 – SS_90_3ply_NF	Surface Spline	5/16	3-1/8	90	3	8	Shear	
Series 2 – SS_90_5ply			4		6	$\langle f \rangle = \langle \chi \rangle$		
Series 3 – LJ_90_3ply	$\left \left \right\rangle = \left \right\rangle$		2 1/2	i v	6	$\int dx = -\lambda dx$	$\langle \rangle$	
Series 3 – LJ_90_3ply_NF	f = 1		5-1/2	90	3	8	Shear	
Series 4 – LJ_90_5ply			6-1/4		6			
Series 5 – LJ_45_3ply			5-1/2		6	12		
Series 5 – LJ_45_3ply_NF				5 1/2	45	3		Withdrawal
Series 6 – LJ_45_5ply	Half Lapped	5/16	8-5/8		6	10		
Series 7 – LJ_45/90_3ply_WSSW	Joint	-,	2 1/2 - 5 1/2		6			
Series 7 – LJ_45/90_3ply_WSSW_NF			3-1/2 + 5-1/2		3	8		
Series 8 – LJ_45/90_5ply_WSSW			6-1/4 + 220	45 + 90			Shear + Withdrawal	
Series 9 – LJ_45/90_3ply_SWSWS			3-1/2 + 5-1/2		6	10		
Series 10 – LJ_45/90_5ply_SWSWS			6-1/4 + 8-5/8					
Series 11 – BJ_33/45_3ply	$\Delta = -i$		7 1/0		6	$\Delta = 1$	Shoor L Withdrawal	
Series 11 – BJ_33/45_3ply_NF	Butt Joint	5/16	/-1/8	· 33 + 45 /	3	8	Shear + Withurawai	
Series 12 – BJ_45_3ply			5-1/2	45	6		Shear	

Notes:

SS=Surface Spline, LJ=Lap Joint, BJ=Butt Joint

WSSW = Screw arrangement within rows. Withdr. + Shear + Shear + Withdr.

SWSWS = Screw arrangement within rows. Shear + Withdr. + Shear + Withdr. + Shear

CrossLam[®] CLT Panels V2M1 Grade

- Test setup as per DIN 26891
- Actuator loading from top
- Load control

100

- Load rate: 5,000 lbf/min
- Brandner et al. (2013)
 - 1. Loading up to 40% (approx.) of estimated maximum
- 120 2. Holding for 30 seconds
 - 3. Unloading to 10% (approx.) of estimated maximum
 - 4. Holding for 30 seconds
 - 5. Loading to failure where failure is assumed to occur when load drops to 80% of recorded maximum

• Most commonly observed failure modes

- Surface Spline Joints:

Head pull-in of screws leads to out-of-plane rotation of specimens

- Most commonly observed failure modes
 - Half Lapped Joints with STS in Shear and Withdrawal:

Head pull-in of screws + out of plane rotation

• Most commonly observed failure modes

- Half Lapped and Butt Joints with STS in Withdrawal:

-Half Lapped Joints: withdrawal (head push-out and pull-in)

- Butt Joints: Out of plane rotation

Results for 3-ply Specimens:

Label	Туре	Total F _{MAX} [lbf]	F _{MAX} [lbf]	F _Y [lbf]	Δ _{MAX} [in]	Δ _Y [in]	K _{0.4} [lbf/in]	Ductility
Series 1 – SS_90_3ply	Surface Spline	11,690	1,461	1,236	1.84	0.34	7,423	5.4
Series 1 – SS_90_3ply_NF	Joint	11,510	1,439	1,146	2.05	0.24	7,423	8.4
Series 3 – U_90_3ply		12,049	1,506	1,146	1.01	0.14	12,562	7.1
Series 3 – U_90_3ply_NF		13,668	1,708	1,259	1.18	0.17	14,846	7.1
Series 5 – LJ_45_3ply		19,423	1,619	1,439	0.16	0.05	82,223	3.4
Series 5 – LJ_45_3ply_NF	Half Lapped	17,804	1,484	1,326	0.23	0.06	62,238	3.9
Series 7 – LJ_45/90_3ply_WSSW	JOIIIL	12,049	1,506	1,326	0.77	0.04	65,093	19.5
Series 7 – LJ_45/90_3ply_WSSW_NF		12,049	1,506	1,214	0.67	0.04	127,902	17.0
Series 9 – LJ_45/90_3ply_SWSWS		11,015	1,102	944	0.97	0.06	47,392	17.6
Series 11 – BJ_33/45_3ply		14,028	1,753	1,529	0.26	0.04	59,383	6.5
Series 11 – BJ_33/45_3ply_NF	Butt Joint	13,128	1,641	1,416	0.30	0.04	51,960	7.5
Series 12 – BJ_45_3ply		12,229	1,529	1,394	1.54	0.40	5,710	3.8

- Total F_{MAX} value is per shear plane ; All other values are per screw

- Average measurements out of 6 specimens and 3 specimens for NF series

- F_{max} = Max. Force ; F_y = Yield Force ; Δ_{MAX} = Max Displ. ; Δ_y = Displ. at Yield ; μ = Ductility ; $K_{0.4}$ = stiffness calculated at 10% - 40% of F_{max}

- Ductility = (Displ. @ F_{max}) / (Displ. @ F_y)

- Yield Force and ductility were calculated following Equivalent Energy Elastic-Plastic

(EEEP) Curves as per ASTM 2126-09

Impact of Friction on 3ply Specimens:

Label	Туре	Total F _{MAX} [lbf]	F _{MAX} [lbf]	F _Y [lbf]	Δ _{MAX} [in]	Δ _Y [in]	K _{0.4} [lbf/in]	Ductility
Series 1 – SS_90_3ply	Surface Spline	11,690	1,461	1,236	1.84	0.34	7,423	5.4
Series 1 – SS_90_3ply_NF	Joint	11,510	1,439	1,146	2.05	0.24	7,423	8.4
Series 3 – LJ_90_3ply		12,049	1,506	1,146	1.01	0.14	12,562	7.1
Series 3 – LJ_90_3ply_NF	Half Lapped	13,668	1,708	1,259	1.18	0.17	14,846	7.1
Series 5 – LJ_45_3ply		19,423	1,619	1,439	0.16	0.05	82,223	3.4
Series 5 – LJ_45_3ply_NF		17,804	1,484	1,326	0.23	0.06	62,238	3.9
Series 7 – LJ_45/90_3ply_WSSW	JOINT	12,049	1,506	1,326	0.77	0.04	65,093	19.5
Series 7 – LJ_45/90_3ply_WSSW_NF		12,049	1,506	1,214	0.67	0.04	127,902	17.0
Series 9 – LJ_45/90_3ply_SWSWS		11,015	1,102	944	0.97	0.06	47,392	17.6
Series 11 – BJ_33/45_3ply		14,028	1,753	1,529	0.26	0.04	59,383	6.5
Series 11 – BJ_33/45_3ply_NF	Butt Joint	13,128	1,641	1,416	0.30	0.04	51,960	7.5
Series 12 – BJ_45_3ply		12,229	1,529	1,394	1.54	0.40	5,710	3.8

- Total F_{MAX} value is per shear plane ; All other values are per screw

- Average measurements out of 6 specimens and 3 specimens for NF series

- F_{max} = Max. Force ; F_y = Yield Force ; Δ_{MAX} = Max Displ. ; Δ_y = Displ. at Yield ; μ = Ductility ; $K_{0.4}$ = stiffness calculated at 10% - 40% of F_{max}

- Ductility = (Displ. @ F_{max}) / (Displ. @ F_y)

- Yield Force and ductility were calculated following Equivalent Energy Elastic-Plastic

(EEEP) Curves as per ASTM 2126-09

Impact of friction seems to be low!

• Load-Displacement Curves

Relative displacement (inch)

• Load-Displacement Curves

Relative displacement (inch)

• Load-Displacement Curves

Relative displacement (inch)

Load-Displacement Curves:

Relative displacement (inch)

Results for 3-ply Specimens:

Label	Туре	Total F _{MAX} [lbf]	F _{MAX} [lbf]	F _Y [lbf]	Δ _{MAX} [in]	Δ _Y [in]	K _{0.4} [lbf/in]	Ductility
Series 1 – SS_90_3ply	Surface Spline Joint	11,690	1,551	1,236	1.84	0.36	7,423	5.1
Series 3 – U_90_3ply	HalfLanned	12,049	1,506	1,146	1.01	0.14	12,562	7.1
Series 5 – LJ_45_3ply		19,423	1,619	1,439	0.16	0.05	82,223	3.4
Series 7 – LJ_45/90_3ply_WSSW	Joint	11,690	1,461	1,326	0.77	0.04	65,093	19.5
Series 9 – LJ_45/90_3ply_SWSWS		10,611	1,057	944	0.97	0.06	47,392	17.6
Series 11 – BJ_33/45_3ply	Dutt Isiat	14,028	1,753	1,529	0.26	0.04	59,383	6.5
Series 12 – BJ_45_3ply	Butt Joint	12,229	1,529	1,394	1.54	0.40	5,710	3.8

- Total F_{MAX} value is per shear plane ; All other values are per screw

- Average measurements out of 6 specimens and 3 specimens for NF series

- F_{max} = Max. Force ; F_y = Yield Force ; Δ_{MAX} = Max Displ. ; Δ_y = Displ. at Yield ; μ = Ductility ; $K_{0.4}$ = stiffness calculated at 10% - 40% of F_{max}

Ductility = (Displ. @ F_{max}) / (Displ. @ F_y)

- Yield Force and ductility were calculated following Equivalent Energy Elastic-Plastic

(EEEP) Curves as per ASTM 2126-09

WHICH STIFFNESS VALUE SHOULD BE USED FOR DESIGN?

Results for 3-ply Specimens:

Label	Туре	Total F _{MAX} [lbf]	F _{MAX} [lbf]	F _Y [lbf]	Δ _{MAX} [in]	Δ _Y [in]	K _{0.4} [lbf/in]	Ductility
Series 1 – SS_90_3ply	Surface Spline Joint	11,690	1,551	1,236	1.84	0.36	7,423	5.1
Series 3 – U_90_3ply		12,049	1,506	1,146	1.01	0.14	12,562	7.1
Series 5 – LI_45_3ply	HaitLanned	19.423	1.619	1.439	0.16	0.05	82.223	3.4
Series 7 – LJ_45/90_3ply_WSSW	Joint	11,690	1,461	1,326	0.77	0.04	65,093	19.5
Series 9 – LL_45/90_3ply_SWSWS		10,611	1,057	944	0.97	0.06	47,392	17.6
Series 11 – BJ_33/45_3ply	Dutt Islat	14,028	1,753	1,529	0.26	0.04	59,383	6.5
Series 12 – BJ_45_3ply	Butt Joint	12,229	1,529	1,394	1.54	0.40	5,710	3.8

- Total F_{MAX} value is per shear plane ; All other values are per screw

- Average measurements out of 6 specimens and 3 specimens for NF series

- F_{max} = Max. Force ; F_y = Yield Force ; Δ_{MAX} = Max Displ. ; Δ_y = Displ. at Yield ; μ = Ductility ; $K_{0.4}$ = stiffness calculated at 10% - 40% of F_{max}

Ductility = (Displ. @ F_{max}) / (Displ. @ F_y)

- Yield Force and ductility were calculated following Equivalent Energy Elastic-Plastic

(EEEP) Curves as per ASTM 2126-09

COMBINATION OF STS IN SHEAR AND WITHDRAWAL, BEST OF BOTH WORLDS?

Results for 5-ply Specimens:

Label	Туре	Total F _{MAX} [lbf]	F _{MAX} [lbf]	F _Y [lbf]	Δ _{MAX} [in]	Δ _Y [in]	K _{0.4} [lbf/in]	Ductility
Series 2 – SS_90_5ply	Surface Spline Joint	12,769	1,596	1,259	1.80	0.29	8,565	6.3
Series 4 – U_90_5ply		21,401	2,675	2,136	2.53	0.35	8,565	7.1
Series 6 – LJ_45_5ply	Half Lapped	29,224	2,922	2,585	0.19	0.07	60,525	2.6
Series 8 – LI_45/90_5ply_WSSW	Joint	17,624	2,203	1,821	0.13	0.01	58,241	11.3
Series 10 – LJ_45/90_5ply_SWSWS		13,848	1,731	1,484	0.17	0.01	55,386	14.3

- Total F_{MAX} value is per shear plane ; All other values are per screw

Average measurements out of 6 specimens and 3 specimens for NF series

- F_{max} = Max. Force ; F_y = Yield Force ; Δ_{MAX} = Max Displ. ; Δ_y = Displ. at Yield ; μ = Ductility ; $K_{0.4}$ = stiffness calculated at 10% - 40% of F_{max}

Ductility = (Displ. @ F_{max}) / (Displ. @ F_y)

- Yield Force and ductility were calculated following Equivalent Energy Elastic-Plastic

(EEEP) Curves as per ASTM 2126-09

Comparison Between 3-ply & 5-ply:

Label	Туре	F _{MAX} [lbf]	Δ _{MAX} [in]	K _{0.4} [lbf/in]	<u>Increase</u> from 3-ply to 5-ply	
		[]		1	F _{MAX}	K _{0.4}
Series 1 – SS_90_3ply	Surface Spline	1,551	1.8	7,423	52%	15%
Series 2 – SS_90_5ply	Joint	2,360	2.3	8,565	5270	
Series 3 – LJ_90_3ply		1,506	1.0	12,562	78%	-32%
Series 4 – LJ_90_5ply		2,675	2.5	8,565		
Series 5 – LJ_45_3ply		1,619	0.2	82,223	750/	-26%
Series 6 – LJ_45_5ply	HalfLanned	2,832	0.2	60,525	7570	
Series 7 – LJ_45/90_3ply_WSSW	Joint	1,461	0.8	65,093	20%	110/
Series 8 – LJ_45/90_5ply_WSSW		1,753	0.1	58,241	20%	-11%
Series 9 – LJ_45/90_3ply_SWSWS		1,057	1.0	47,392	220/	17%
Series 10 – LJ_45/90_5ply_SWSWS		1,394	0.2	55,386	32%	

Going to 5-ply = increase in connection capacity

Comparison Between 3-ply & 5-ply:

Label	Type F _{MAX} [lbf]		∆ _{MAX} [in]	K _{0.4} [lbf/in]	<u>Increase</u> from 3-ply to 5-ply	
					F _{MAX}	K _{0.4}
Series 1 – SS_90_3ply	Surface Spline	1,551	1.8	7,423	52%	15%
Series 2 – SS_90_5ply	Joint	2,360	2.3	8,565	JZ70	
Series 3 – LJ_90_3ply		1,506	1.0	12,562	700/	-32%
Series 4 – LJ_90_5ply	-	2,675	2.5	8,565	7870	
Series 5 – LJ_45_3ply		1,619	0.2	82,223	75%	-26%
Series 6 – LJ_45_5ply	HalfLapped	2,832	0.2	60,525		
Series 7 – LJ_45/90_3ply_WSSW	Joint	1,461	0.8	65,093	20%	110/
Series 8 – LJ_45/90_5ply_WSSW		1,753	0.1	58,241	20%	-11%
Series 9 – LJ_45/90_3ply_SWSWS		1,057	1.0	47,392	220/	17%
Series 10 – LJ_45/90_5ply_SWSWS		1,394	0.2	55,386	32%	

Going to 5-ply = not all tests show stiffness increase for 5-Ply

Comparison Between Design & Test Data:

Label	Туре	F _{MAX} [lbf]	Predicted* F _{MAX} [lbf]	Δ _{MAX} [in]	K _{0.4} [lbf/in]	Over- Strength Ratio
Series 1 – SS_90_3ply	Surface Spline Joint	1,551	221	1.8	7,423	7.0
Series 2 – LJ_90_3ply		1506	262	1.0	12,562	5.8
Series 3 – LJ_45_3ply	Half Lapped	1619	420	0.2	82,223	3.9
Series 4 – LJ_45/90_3ply_WSSW	Joint	1461		0.8	65,093	3.5
Series 5 – LJ_45/90_3ply_SWSWS		1057		1.0	47,392	2.5
Series 6 – BJ_33/45_3ply	Dutt loint	1,753	560	0.3	59,383	3.1
Series 7 – BJ_45_3ply	Bull Joint	1,529	151	1.5	5,710	10.1

Connection Static Over-Strength Factors Estimate

Panel to Panel Connections

Test Campaign #2 Cyclic Loading

Surface Spline Joints

Half Lapped Joints

Butt Joints

Test Campaign #2 : Cyclic Loading

General Test Setup

CUREE Loading Protocol (ASTM 2126-09)

- Displacement Controlled
- Displacement Rate: 0.1"/sec
- Ductility calculations: EEEP ASTM 2126-09
- Stiffness calculations: as per EN-26891 (10-40%)

Test Campaign #2 : Test Series

Label	Туре	STS Ø [in]	STS Length [in]	Angle [°]	Replicates	# STS per Shear Plane	STS action
Series 1 – SS @ 90 - 3ply	Surface Spline	5/16	3-1/8	90	6		Shear
Series 2 – LJ @ 90 - 3ply			3-1/2	90	6	8	Shear
Series 3 – LJ @ 45 - 3ply	Half Lapped	- 44 6	5-1/2 3-1/2 + 5-1/2	45	6	12	Withdrawal
Series 4 – LJ @ 45&90 (1) - 3ply	Joint	5/16		45 00	6	8	Shear + Withdrawal
Series 5 – LJ @ 45&90 (2) - 3ply			3-1/2 + 5-1/2	45 + 90	6	10	
Series 6 – BJ @ 33&45 - 3ply		F /1 C	7 1 /0	33 + 45	6		Withdrawal
Series 7 – BJ @ 45 - 3ply	Bull Joint	5/16	7-1/8	45	6		Shear

Notes:

SS=Surface Spline, LJ=Lap Joint, BJ=Butt Joint

WSSW

= Screw arrangement within rows. Withdr. + Shear + Shear + Withdr.

SWSWS = Screw arrangement within rows. Shear + Withdr. + Shear + Withdr. + Shear

Surface Spline Joints

Half Lapped Joints

Butt Joints

CrossLam[®] CLT Panels V2M1 Grade

Test Series #1 : Configuration

Surface Spline Joint with STS in Shear

1″ = 25.4 mm

Courtesy of: Afrin Hossain©

Test Series #1 : Load-Displacement Curve

Test Series #1 : Backbone Curve

Test Series #1 : Connection Performance

Overall Connection Behaviour at Failure

Separation of members in ultimate state

In and out-of-plane rotation

Test Series #1 : Connection Performance

STS Behaviour at Failure

Test Series #2 : Configuration

Half Lapped Joint with STS in Shear

Courtesy of: Afrin Hossain©

Test Series #2 : Load-Displacement Curve

13.5

Test Series #2 : Backbone Curve

13.5
Test Series #2 : Connection Performance

Overall Connection Behaviour at Failure

Large displacement and separation of members and specimen rotation

Test Series #2 : Connection Performance

STS Behaviour at Failure

Test Series #3 : Configuration

Half Lapped Joint with STS in Tension

Courtesy of: Afrin Hossain©

1" = 25.4 mm

Test Series #3 : Load-Displacement Curve

13.5

Test Series #3 : Backbone Curve

Test Series #3 : Connection Performance

Overall Connection Behaviour at Failure

Small displacement and specimen separation

Minimal in plane and out-of-plane rotation

Test Series #3 : Connection Performance

STS Behaviour at Failure

Head push-out and head pull-in

Test Series #4 : Configuration

Half Lapped Joint with STS in Shear and Tension

13-90-45-11 #? 17-96-45-11

Courtesy of: Afrin Hossain©

1" = 25.4 mm

Test Series #4 : Testing Video

Half Lapped Joint with STS in Shear and Tension

Test Series #4 : Load-Displacement Curve

13.5

Test Series #4 : Backbone Curve

Test Series #4 : Connection Performance

Overall Connection Behaviour at Failure

Test Series #4 : Connection Performance

STS Behaviour at Failure

Test Series #5 : Configuration

Half Lapped Joint with STS in Shear and Tension

1" = 25.4 mm

Courtesy of: Afrin Hossain©

Test Series #5 : Load-Displacement Curve

13.5

Force per screw [lbf]

Test Series #5 : Backbone Curve

13.5

Test Series #5 : Connection Performance

Overall Connection Behaviour at Failure

Test Series #6 : Configuration

Butt Joint with STS in Shear and Tension

Courtesy of: Afrin Hossain©

Test Series #6 : Load-Displacement Curve

Force per screw [lbf]

Test Series #6 : Backbone Curve

Force per screw [lbf]

Test Series #6 : Connection Performance

Overall Connection Behaviour at Failure

Test Series #6 : Connection Performance

STS Behaviour at Failure

Connection exhibits large degree of ductility

STS failed in withdrawal first, subsequent yielding towards ultimate state

Test Series #7 : Configuration

Butt Joint with STS in Shear

1" = 25.4 mm

TOP VIEW

Test Series #7 : Load-Displacement Curve

13.5

Test Series #7 : Backbone Curve

13.5

Test Series #7 : Connection Performance

Overall Connection Behaviour at Failure

Test Series #7 : Connection Performance

Overall Connection Behaviour at Failure

Large displacement visible In-plane and out-of-plane rotation in ultimate state

Test Series #7 : Connection Performance

STS Behaviour at Failure

Head push-out and head pull-in failures Screw breakage at ultimate level

13.5

13.5

Displacement [in]

Force per screw [lbf]

Force per screw [lbf]

13.5

Displacement [in]

13.5

Displacement [in]

Force per screw [lbf]

Displacement [in]

Displacement [in]

Average Test Results for **POSITIVE** envelope

Series	Total Max Force F _{Max}	Max Force F _{MAX}	Yield Force F _Y	Max. Displacement Δ _{MAX}	Disp. @ Yield Δ _y	Ductility μ	Stiffness (10%-90%) F _y	Stiffness K _{0.4} (10%-40%) F _{MAX}
	[lbf]	[lbf]	[lbf]	[in]	[in]		[lbf/in]	[lbf/in]
Series 1 – SS @ 90 - 3ply	9,172	1,146	967	1.38	0.24	5.6	2,284	5,139
Series 2 – LJ @ 90 - 3ply	9,891	1,236	877	1.00	0.14	7.2	2,855	3,426
Series 3 – LJ @ 45 - 3ply	17,265	1,439	1,281	0.17	0.11	1.6	10,278	11,991
Series 4 – LJ @ 45&90 (1) - 3ply	8,632	1,079	967	0.83	0.06	13.1	12,562	12,562
Series 5 – LJ @ 45&90 (2) - 3ply	9,442	944	854	0.45	0.05	8.8	15,417	19,414
Series 6 – BJ @ 33&45 - 3ply	14,207	1,776	1,574	0.22	0.08	2.8	11,991	15,417
Series 7 – BJ @ 45 - 3ply	13,308	1,664	1,461	1.33	0.41	3.3	2,855	3,997

- Total F_{MAX} value is per shear plane ; All other values are per screw

- Average measurements out of 3 specimens

- F_{max} = Max. Force ; F_{v} = Yield Force ; Δ_{MAX} = Max Displ. ; Δ_{v} = Displ. at Yield ; μ = Ductility ; $K_{0.4}$ = stiffness calculated at 10% - 40% of F_{max}

- Ductility = (Displ. @ F_{max}) / (Displ. @ F_{y})

- Yield Force and ductility were calculated following Equivalent Energy Elastic-Plastic

(EEEP) Curves as per ASTM 2126-09
Average Test Results for **NEGATIVE** envelope

Series	Total Max Force F _{MAX}	Max Force F _{MAX}	Yield Force F _Y	Max. Displacement Δ _{MAX}	Disp. @ Yield Δ _y	Ductility μ	Stiffness (10%-90%) F _y	Stiffness K _{0.4} (10%-40%) F _{MAX}
	[lbf]	[lbf]	[lbf]	[in]	[in]		[lbf/in]	[lbf/in]
Series 1 – SS @ 90 - 3ply	6,834	854	697	0.91	0.26	3.5	1,713	2,855
Series 2 – LJ @ 90 - 3ply	7,913	989	809	0.71	0.19	3.8	2,284	3,997
Series 3 – LJ @ 45 - 3ply	14,028	1,169	1,057	0.15	0.06	2.4	15,417	13,704
Series 4 – LJ @ 45&90 (1) - 3ply	7,194	899	764	0.55	0.04	12.7	16,559	22,269
Series 5 – LJ @ 45&90 (2) - 3ply	7,868	787	719	0.55	0.05	10.8	10,278	9,136
Series 6 – BJ @ 33&45 - 3ply	8,992	1,236	1,012	0.11	0.06	1.8	11,991	13,133
Series 7 – BJ @ 45 - 3ply	9,352	1,169	944	1.06	0.28	3.9	2,284	3,997

- Total F_{MAX} value is per shear plane ; All other values are per screw

- Average measurements out of 3 specimens

- F_{max} = Max. Force ; F_y = Yield Force ; Δ_{MAX} = Max Displ. ; Δ_y = Displ. at Yield ; μ = Ductility ; $K_{0.4}$ = stiffness calculated at 10% - 40% of F_{max}

- Ductility = (Displ. @ F_{max}) / (Displ. @ F_{y})

- Yield Force and ductility were calculated following Equivalent Energy Elastic-Plastic

AVERAGE Test Results

Series	Total Max Force F _{MAX}	Max Force F _{MAX}	Yield Force F _Y	Max. Displacement Δ _{MAX}	Disp. @ Yield Δ _γ	Ductility μ	Stiffness (10%-90%) F _y	Stiffness K _{0.4} (10%-40%) F _{MAX}
	[lbf]	[lbf]	[lbf]	[in]	[in]		[lbf/in]	[lbf/in]
Series 1 – SS @ 90 - 3ply	8,003	1,000	832	1.14	0.25	4.6	1,998	3,997
Series 2 – LJ @ 90 - 3ply	8,992	1,113	843	0.85	0.16	5.2	2,569	3,711
Series 3 – 니 @ 45 - 3ply	15,646	1,304	1,169	0.16	0.08	1.9	12,847	12,847
Series 4 – LJ @ 45&90 (1) - 3ply	7,913	989	865	0.69	0.05	13.0	14,560	17,415
Series 5 – LJ @ 45&90 (2) - 3ply	8,542	854	787	0.50	0.05	9.8	12,847	14,275
Series 6 – BJ @ 33&45 - 3ply	12,049	1,506	1,293	0.17	0.07	2.3	11,991	14,275
Series 7 – BJ @ 45 - 3ply	11,330	1,416	1,203	1.19	0.34	3.5	2,569	3,997

- Total F_{MAX} value is per shear plane ; All other values are per screw

- Average measurements out of 6 specimens

- F_{max} = Max. Force ; F_y = Yield Force ; Δ_{MAX} = Max Displ. ; Δ_y = Displ. at Yield ; μ = Ductility ; $K_{0.4}$ = stiffness calculated at 10% - 40% of F_{max}

- Ductility = (Displ. @ F_{max}) / (Displ. @ F_{y})

- Yield Force and ductility were calculated following Equivalent Energy Elastic-Plastic

Test Campaign #2 : Cyclic Test Results

Max Force per Screw: Positive Envelope vs. Negative Envelope

Positive Envelope
Negative Envelope

Test Campaign #2: STS Cost Analysis

STS Cost Comparison

Cost Comparison per kip at Design Level

Static vs Cyclic Performance

Comparison of Connection Capacity

		STATIC LOADII	NG		CYCLIC LOADING			
Series	Total Max Max Forc Force F _{Max} F _{Max}		Yield Force F _y	Total Max Force F _{MAX}	Max Force F _{MAX}	Yield Force F _y	<u>Reduction</u> of Capacity due to Cyclic Loading	
	[lbf]	[lbf]	[lbf]	[lbf]	[lbf]	[lbf]	F _{MAX}	F _Y
Series 1 – SS @ 90 - 3ply	11,690	1,461	1,236	8,003	1,012	832	31%	33%
Series 2 – LJ @ 90 - 3ply	12,049	1,529	1,124	8,902	1,124	854	26%	24%
Series 3 – LJ @ 45 - 3ply	19,423	1,619	1,304	15,646	1,304	1,169	19%	10%
Series 4 – LJ @ 45&90 (1) - 3ply	12,049	1,506	989	7,913	989	877	34%	11%
Series 5 – LJ @ 45&90 (2) - 3ply	11,015	1,102	854	8,655	854	787	22%	8%
Series 6 – BJ @ 33&45 - 3ply	14,028	1,753	1,506	12,049	1,506	1,304	14%	13%
Series 7 – BJ @ 45 - 3ply	12,229	1,529	1,461	11,330	1,416	1,214	7%	17%

- Total F_{MAX} value is per shear plane ; All other values are per screw

- Average measurements out of 6 specimens and 3 specimens for cyclic

- F_{max} = Max. Force ; F_y = Yield Force ; Δ_{MAX} = Max Displ. ; Δ_y = Displ. at Yield ; μ = Ductility ; $K_{0.4}$ = stiffness calculated at 10% - 40% of F_{max}

- Ductility = (Displ. @ F_{max}) / (Displ. @ F_y)

- Yield Force and ductility were calculated following Equivalent Energy Elastic-Plastic

Comparison of Connection Capacity

		STATIC LOADII	NG		CYCLIC LOADING			
Series	Total Max Max Force Force F _{MAX}		Yield Force F _y	Total Max Force F _{MAX}	Max Force F _{MAX}	Yield Force F _Y	<u>Reduction</u> of Capacity due to Cyclic Loading	
	[lbf]	[lbf]	[lbf]	[lbf]	[lbf] [lbf]		F _{MAX}	F _Y
Series 1 – SS @ 90 - 3ply	11,690	1,461	1,236	8,003	1,012	832	31%	33%
Series 2 – LJ @ 90 - 3ply	12,049	1,529	1,124	8,902	1,124	854	26%	24%
Series 3 – LJ @ 45 - 3ply	19,423	1,619	1,304	15,646	1,304	1,169	19%	10%
Series 4 – LJ @ 45&90 (1) - 3ply	12,049	1,506	989	7,913	989	877	34%	11%
Series 5 – LJ @ 45&90 (2) - 3ply	11,015	1,102	854	8,655	854	787	22%	8%
Series 6 – BJ @ 33&45 - 3ply	14,028	1,753	1,506	12,049	1,506	1,304	14%	13%
Series 7 – BJ @ 45 - 3ply	12,229	1,529	1,461	11,330	1,416	1,214	7%	17%

- Total F_{MAX} value is per shear plane ; All other values are per screw

- Average measurements out of 6 specimens and 3 specimens for cyclic

- F_{max} = Max. Force ; F_y = Yield Force ; Δ_{MAX} = Max Displ. ; Δ_y = Displ. at Yield ; μ = Ductility ; $K_{0.4}$ = stiffness calculated at 10% - 40% of F_{max}

- Ductility = (Displ. @ F_{max}) / (Displ. @ F_y)

- Yield Force and ductility were calculated following Equivalent Energy Elastic-Plastic

Comparison of Connection Performance

	S	TATIC LOADI	NG	(
Series	Max. Displacement Δ _{MAX}	Ductility μ	Stiffness K _{0.4} (10%-40%) F _{MAX}	Max. Displacement Δ _{MAX}	Ductility μ	Stiffness K _{0.4} (10%-40%) F _{MAX}	<u>Reduction</u> of Ductility and Stiffness due to Cyclic Loading	
	[in]		[lbf/in]	[in]		[lbf/in]	Ductility	К _{0.4}
Series 1 – SS @ 90 - 3ply	1.84	5.4	7,423	1.14	4.6	3,997	15%	46%
Series 2 – LJ @ 90 - 3ply	1.01	7.1	12,562	0.85	5.5	3,711	23%	70%
Series 3 – LJ @ 45 - 3ply	0.16	3.4	82,223	0.16	2.0	12,847	41%	84%
Series 4 – LJ @ 45&90 (1) - 3ply	0.77	19.5	65,093	0.69	12.8	17,415	34%	73%
Series 5 – LJ @ 45&90 (2) - 3ply	0.97	17.6	47,392	0.50	9.7	14,275	45%	70%
Series 6 – BJ @ 33&45 - 3ply	0.26	6.5	59,383	0.17	2.3	14,275	65%	76%
Series 7 – BJ @ 45 - 3ply	1.54	3.8	5,710	1.19	3.6	3,997	5%	30%

- Total F_{MAX} value is per shear plane ; All other values are per screw

- Average measurements out of 6 specimens and 3 specimens for cyclic

- F_{max} = Max. Force ; F_y = Yield Force ; Δ_{MAX} = Max Displ. ; Δ_y = Displ. at Yield ; μ = Ductility ; $K_{0.4}$ = stiffness calculated at 10% - 40% of F_{max}

- Ductility = (Displ. @ F_{max}) / (Displ. @ F_{y})

- Yield Force and ductility were calculated following Equivalent Energy Elastic-Plastic

Comparison of Connection Performance

	S	TATIC LOADI	NG	(
Series	Max. Displacement Δ _{MAX} μ		Stiffness K _{0.4} (10%-40%) F _{MAX}	Max. Displacement Δ _{MAX}	Ductility μ	Stiffness K _{0.4} (10%-40%) F _{MAX}	<u>Reduction</u> of Ductility and Stiffness due to Cyclic Loading	
	[in]		[lbf/in]	[in]		[lbf/in]	Ductility	К _{0.4}
Series 1 – SS @ 90 - 3ply	1.84	5.4	7,423	1.14	4.6	3,997	15%	46%
Series 2 – LJ @ 90 - 3ply	1.01	7.1	12,562	0.85	5.5	3,711	23%	70%
Series 3 – LJ @ 45 - 3ply	0.16	3.4	82,223	0.16	2.0	12,847	41%	84%
Series 4 – LJ @ 45&90 (1) - 3ply	0.77	19.5	65,093	0.69	12.8	17,415	34%	73%
Series 5 – LJ @ 45&90 (2) - 3ply	0.97	17.6	47,392	0.50	9.7	14,275	45%	70%
Series 6 – BJ @ 33&45 - 3ply	0.26	6.5	59,383	0.17	2.3	14,275	65%	76%
Series 7 – BJ @ 45 - 3ply	1.54	3.8	5,710	1.19	3.6	3,997	5%	30%

- Total F_{MAX} value is per shear plane ; All other values are per screw

- Average measurements out of 6 specimens and 3 specimens for cyclic

- F_{max} = Max. Force ; F_y = Yield Force ; Δ_{MAX} = Max Displ. ; Δ_y = Displ. at Yield ; μ = Ductility ; $K_{0.4}$ = stiffness calculated at 10% - 40% of F_{max}

- Ductility = (Displ. @ F_{max}) / (Displ. @ F_{y})

- Yield Force and ductility were calculated following Equivalent Energy Elastic-Plastic

Test Campaign #2 : Static vs Cyclic

Comparison between Design & Cyclic Test Data:

Label	Туре	F _{MAX} [lbf]	Predicted* F _{MAX} [lbf]	Δ _{MAX} [in]	K _{0.4} [lbf/in]	Over- Strength Ratio
Series 1 – SS_90_3ply	Surface Spline Joint	1,000	221	1.8	3,997	4.5
Series 2 – LJ_90_3ply		1,113	262	1.0	3,711	4.3
Series 3 – LJ_45_3ply	Half Lapped Joint	1,304	420	0.2	12,847	3.1
Series 4 – LJ_45/90_3ply_WSSW		989	420	0.8	17,415	2.4
Series 5 – LJ_45/90_3ply_SWSWS		865	420	1.0	14,275	2.1
Series 6 – BJ_33/45_3ply	Dutt loint	1,506	560	0.3	14,275	2.7
Series 7 – BJ_45_3ply	Bull Joint	1,416	151	1.5	3,997	9.4

Connection Over-strength Factors Estimate

Conclusions

1. Tests indicate ductile performance with STS in shear action

2. Tests indicate brittle performance with STS in withdrawal, higher initial stiffness and ultimate capacity

Conclusions

- 3. Tests indicate moderate performance with STS in combined action
- 4. Tests indicate reduction in capacity and stiffness in cyclic tests

5. Tests indicate Butt Joints exhibit good performance under cyclic loading

Conclusions

6. In addition, Butt Joints exhibited minimal reduction of capacity and stiffness from static results in linear elastic range

7. Testing indicates the conservative nature of over-strength factors even between static design approach and cyclic results

Outlook

- 1. Group action factors need more testing no conclusive results
- 2. Dynamic confirmation testing needs to address the created perpendicular force component and its impact
- 3. Impact of difference in fasteners to butt joint performance, partially threaded or fully threaded, to be investigated
- 4. Medium scale testing with 4'x8' CLT panels i.e. shear wall
- 5. Investigating fastener diameter influence

- Prof. Dr. Thomas Tannert, Univ. of British Columbia
- Afrin Hossain, PhD. candidate Univ. of British Columbia

THANK YOU for attending

Performance of CLT Connections under Dynamic Loading

www.my-ti-con.com info@my-ti-con.com 1-866.899.4090

