MyTiCon Timber Connectors DESIGN EXAMPLE

PRE-ENGINEERED CONNECTOR SYSTEMS

RICON S VS concealed connectors offer a wide variety of advantages to designers and timber framers. As a system, RICON S VS (S60 & S80) connectors provide a universally applicable connector for wood-wood connections, as well as wood-steel and wood-concrete. They allow for simple screwing without pre-drilling, and due to their V-shaping, easy beam hanging is achievable. Additionally, as they are concealed within the timber joints, a fire rating is also attainable.

Even though, these connectors are very flexible and provide great advantages to designers, their correct design and sizing can seem to be a daunting task. The following design examples show the applicable design procedure in detail.

The CSA 086 allows for alternative design solutions under its "New or Special Systems of Design and Construction" section. In this example we use this clause and will follow the connectors design methods outlined in the respective European Technical Approvals (ETA).

CONTACT US

1.866.899.4090 sales@my-ti-con.com

Technical Support 1.866.899.4090

www.my-ti-con.com

DESIGN EXAMPLE

CONCEALED | SELF-TIGHTENING | DEMOUNTABLE | VERSATILE

RICON[®] 140/60 S VS Design Example #1

DESIGN EXAMPLE #1: Design of Joint subjected to a Tensile Force (F ₁) using KNAPP [®] RICON 140/60 S VS Connector (without Tension perpendicular to grain reinforcement)									
Design Assumptions and	Joint:								
Connection Geometry Check:	k: Rectangular glulam timber members (D.Fir) with a Secondary Beam (SB) to Primary Beam (Pl Connection. Cross section dimensions to follow requirements for minimum cross section dimensions in a cordance with [1] and [2]. Table 1—Minimum Cross Section Requirements ^{[1}								
			Minimum Cross Section						
	Secondary Beam:		Requirements						
An F1	Use 130x190[mm] OK	Connector	PB Width [mm]	SB Width [mm]	SB Depth [mm]				
	Primary Beam:	RICON 140/60 S VS	80	100	160				
	Min. depth of SB 160[mm] Min. width of PB to be greater than full length of FT ASSY® screws driven into PB.	RICON 200/60 S VS	80	100	220				
		RICON 200/80 S VS	100	120	230				
		RICON 290/80 S VS	100	120	320				
	This example with 8x80[mm] screws in PB.	Table 2—Design Factors ^[3]							
PB	Use: 130x305[mm] [*] 0K		Design Factors						
		Connector	F _{1,KCC,Rd} [kN] a _c		_c [mm]				
General Joint Geometry		RICON 140/60 S VS		60					
		RICON 200/60 S VS	0.0	120					
		RICON 200/80 S VS	9.0	1	120				
		RICON 290/80 S VS		210					
	* A 80x305[mm] glulam PB would also suit this e use of the 80mm PB width as an alternative.	xample. The RICON S VS co	nnector plate is	5mm thick, thus	allowing for				

DESIGN EXAMPLE

CONCEALED | SELF-TIGHTENING | DEMOUNTABLE | VERSATILE

DESIGN EXAMPLE

CONCEALED | SELF-TIGHTENING | DEMOUNTABLE | VERSATILE

RICON[®] 140/60 S VS Design Example #2

DESIGN EXAMPLE #2: Design of Joint (with	subjected to a Vertical Shear Force nout Tension perpendicular to grai	e (F ₂) using KNAPP® n reinforcement)	RICON 140)/60 S VS Co	onnector				
Design Assumptions and	Joint:								
Connection Geometry Check:	Rectangular glulam timber members (D.Fir) with a Secondary Beam (SB) to Primary Beam (PB) Connection.								
	Cross section dimensions to follow requirements for minimum cross section dimensions in ac- cordance with [1] and [2].								
	Table 3—Minimum Cross Section Requirement								
	Secondary Beam:	Connector	Minimum Cross Section Requirements						
F2	Use 130x190[mm] OK	connector	PB Width [mm]	SB Width [mm]	SB Depth [mm]				
	Primary Beam:	RICON 140/60 S VS	80	100	160				
	Use: 130x305[mm] [*] OK	RICON 200/60 S VS	80	100	220				
		RICON 200/80 S VS	100	120	230				
PB		RICON 290/80 S VS	100	120	320				
	Table 4—Design Factors ^[3]								
			Design Factors						
		Connector	F _{2,KCC,Rd} [kN]	K _{h,:}	2 [mm]				
General Joint Geometry		RICON 140/60 S VS	60	1	10.7				
		RICON 200/60 S VS	60	2	27.8				
	· 9: 8 ***	RICON 200/80 S VS	00	27.8					
	10	RICON 290/80 S VS	99	68.4					
	* A 80x305[mm] glulam PB would also suit this e use of the 80mm PB width as an alternative.	example. The RICON S VS co	nnector plate is	5mm thick, thu	s allowing for				
Reinforcement check:	w_{SB} = 130[mm] <i>(min)</i> ; w_{PB} =130[mm];							
Depending on the location of the connector	H _H =H _{SB} = 190[mm] <i>(min) ;</i>								
within the element's cross section, radial	H _{PB} = 305[mm] ;								
screw is required.	$A_N = 133[mm]$ (distance from top edge to centroid of bottom screw in SB)								
If $A_{o}/H_{H} < 0.70$, radial tension reinforcement	Required location to ensure $A_n/H_H \ge 0.70 = 133 / 190 = 0.70 ok$								
is required.	(Locate centre of axis of bottom tensile screw in SB, 133mm from top edge of Beam)								
	Radial tension reinforcement to avoid splitting is <i>not</i> required.								

DESIGN EXAMPLE

CONCEALED | SELF-TIGHTENING | DEMOUNTABLE | VERSATILE

DESIGN EXAMPLE #2: Design of Joint	subjected to a Vertical Shear F	r Force (F ₂) using KNAPP [®] RICON 140/60 S VS Connector							
Relevant input information:	"input data:" "For: ASSY VG CSK 8x80 Scre	crew to be used in PB (header)"							
	$\begin{array}{cccc} \overset{"}{l_{thread8x80} := 72} & mm & \text{``outer thread diameter''} \\ & mm & \text{``thread length''} \end{array}$								
	$\rho_{header}\!\coloneqq\!490\boldsymbol{\cdot}.84\!=\!411.6$	$rac{kg}{m^3}$ "Relative Density adjustment"							
	"For: ASSY VG CSK 8x160	60 Screw to be used in SB (joist)"							
<u>Note</u> :	$d \coloneqq 8$ $l_{thread 8r160} \coloneqq 143$	mm "outer thread diameter" mm "thread length"							
Relative Density refers to the adjusted Mean -oven Dry Relative Density as per recom- mendations in Table 3-7a of the Wood Hand-	$\rho_{joist} \coloneqq 490 \boldsymbol{\cdot}.84 = 411.6$	5							
book.	n := 10 "number of screws per connector plate"								
$\rho = 1,000 \cdot (G_m = \rho_k) \cdot (1 + MC/100)$	"Calculation of effective nu	"Calculation of effective number of fasteners:"							
ρ = 490 kg/m [°] at service conditions (assumed MC=19%)	$n_{ef} := n^{0.9} = 7.943$ "Group Effect Factor"								
MC = 19%	"Unfactored Torsional Resistance[3] of fasteners:"								
Solving -> $\rho_k = \rho \cdot (1 / 1.19) = \rho \cdot 0.84$	$M_{yrk} \coloneqq 20000 \qquad N \cdot mm$								
Calculation of Unfactored Shear Resistance F_{V,H,Rk} of RICON 140/60 S VS	"Unfactored Lateral Load Resistance for PB (header):" ""								
Connector into PB (Header)	"Unfactored Embedment Strength of timber" $\alpha_h := 90 \cdot \left(\frac{\pi}{180}\right) = 1.571$								
	$f_{hk} \coloneqq \left(0.033 + 0.049 \right)$	$\left(9 \cdot \frac{90}{90}\right) \cdot \rho_{header} \cdot d^{-0.3} = 18.087 MPa$							
	"Unfactored Withdrawal	al Resistance of ASSY Fastener into PB (header)"							
	$F_{axRHk} \coloneqq \frac{0.52 \cdot \sqrt{d} \cdot l_{this}}{1.2 \cdot (\cos \alpha)}$	$\frac{thread8x80}{(\alpha_{*})^{2} + (\sin(\alpha_{*}))^{2}} = 8.526 \cdot 10^{3} N$							
<u>Note</u> :	1.2 (605 (4)	(α_h) (on (α_h))							
Terms A _h , B _h and C _h , correspond to Section 8.2.3 in [1].	"Unfactored Shear Resistan"	ance of RICON $140/60$ S VS Connector in PB" asign provisions outlined in Section 8.2.3 and "							
Specifically terms A_h , B_h check for fastener	"Equation 8.10 of [1] for sing "(The unfactored shear resis	ngle shear connections with thick outer steel plates:" sistance is the minimum of terms Ah, Bh and Ch)"							
wood-related failure as per Johansen's Yield Model.	"t1 : penetration of screw	ew into Header:" $t_1 := l_{thread8x80} = 72 mm$							
	$A_h \coloneqq \left(f_{hk} \cdot t 1 \cdot d \cdot \left(\left(\sqrt{2} + \frac{1}{2} \right) \right) \right) $	$\overline{2 + \frac{4 \cdot M_{yrk}}{f_{hk} \cdot d \cdot t1^2}} - 1 \bigg) \bigg) = 4.703 \cdot 10^3 \qquad N$							
	$A \coloneqq \frac{F_{axRHk}}{4}$	$\frac{Hk}{M} = 2.131 \cdot 10^{3} \qquad A_{hk} := A_{h} + (A) = 6.834 \cdot 10^{3}$							

DESIGN EXAMPLE

MyTiCon Timber Connectors

CONCEALED | SELF-TIGHTENING | DEMOUNTABLE | VERSATILE

DESIGN EXAMPLE

CONCEALED | SELF-TIGHTENING | DEMOUNTABLE | VERSATILE

DESIGN EXAMPLE

CONCEALED | SELF-TIGHTENING | DEMOUNTABLE | VERSATILE

RICON[®] 140/60 S VS Design Example #3

DESIGN EXAMPLE #3: Design of radial ter RI	nsion (perpendicular to grain) reinforcement for joint using KNAPP® CON 140/60 S VS Connector					
Desire Assumptions	Rectangular <i>glue-laminated</i> timber members (D.Fir) with a typical SB to PB connection.					
Design Assumptions:	For RICON 140/60 S VS : Min SB dimensions: 100 x 160mm					
	Min. PB width : 80mm					
Connection Geometry:	"input data:" "For: ASSY VG CSK 8x80 Screw to be used in Principal Beam (Header)" ""					
	d := 8 mm "outer thread diameter" $l_{thread8x80} := 72$ mm "thread length"					
	$\rho_{header} \coloneqq 490 \cdot .84 = 411.6$ $\frac{\kappa g}{m^3}$ "Relative Density Adjustment"					
	"For: ASSY VG CSK 8x160 Screw to be used in Secondary Beam (Joist)"					
	$d \coloneqq 8$ mm "outer thread diameter" $L_{1} \underset{m}{ = 100 \text{ spin}} \coloneqq 143$ mm "thread length"					
w _{sB} = 130mm ; w _{PB} = 130mm ;	$\rho_{\text{initial}} = 490 \cdot .84 = 411.6$ "Relative Density adjustment"					
H _H =H _{SB} = 190mm ;	n := 10 "number of screws per connector plate"					
H _{PB} = 305mm ; A _N = 114mm (min)	"Joint Geometry:"					
<i>A_n/H_J</i> ≥ 0.70 (required) —> 114 / 190 = 0.60 NOT OK	"Location from top of secondary beam to outer tensile screw" An := 114 mm "SB Height:"					
Radial tension reinforcement with ASSY Full Thread, screw is required	$\begin{array}{c} Him = 190 mm \\ \text{"SB Width:"} \\ b_{SB} \coloneqq 120 mm \end{array} \qquad $					
Intedd Selew Is required.	$Ratio := \frac{An}{Hh} = 0.6$ "<0.70 Tensione Perp. to Grain" "Beinforcement is required"					
	"Shear Force on Joint, F2:"					
	"Following Eurocode 5–1995–1.1 Provisions:"					
	$d_{reinf} = 8$ ScrewLength:= 180					
	$\alpha \coloneqq Ratio = 0.6 \qquad \qquad l_{eff} \coloneqq ScrewLength - An - d_{reinf} \equiv 58 mm$					
	"Tensile Force to be transmitted by the reinforcing ASSY CYL VG screw:" V := F2 = 15 kN "[EC5, Eqn. 8.30], where:" $\alpha = 0.6$ $k := 1.3 \cdot \left(3 \cdot \left(1 - \alpha\right)^2 - 2 \cdot \left(1 - \alpha\right)^3\right) = 0.458$					
	$F_{axED} := k_{\alpha} \cdot V = 6.864 kN$					
	"as per CCMC Report 13677:"					
	$P_{rw} = \frac{1.60}{20} \cdot l_{eff} = 4.64 \ kN$ "per screw"					
	$F_{tn} = 15.2$ kN "Factored Tensile Resistance of screw"					
	$W\!\coloneqq\!min\left(\!P_{rw},F_{tn}\! ight)\!=\!4.64$ kN					
	$n_{screws} \coloneqq \left(\sqrt{\frac{F_{axED}}{P_{rw}}} \right)^{0.9} = 1.193 \qquad \text{``2 ASSY VG CYL 8x180 OK''}$					

DESIGN EXAMPLE

CONCEALED | SELF-TIGHTENING | DEMOUNTABLE | VERSATILE

RICON[®] 140/60 S VS Design Example #4

DESIGN EXAMPLE #4: Design of Joint subjected to a Lateral Shear Force (F ₄₅) using KNAPP [®] RICON 140/60 S VS Connector (without Tension perpendicular to grain reinforcement)										
(with		luicular	to gra	in reinio	orcemer					
Design Assumptions and	Joint: Rectangular glulam timber members (D Eir) with a Secondary Ream (SR) to Primary Ream (DR)									
Connection Geometry Check:	Connection.									
	cross section dimensions to follow requirements for minimum cross section dimensions in ac- cordance with [1] and [2].									
	Secondary Beam: Table 5—Minimum Cross Section Requirements ^[1]									
	Use 130x190[mm] OK				Connector		Minimum Cross Section			
	Primary Beam:	_		Connector			Require			
	Use: 130x305[mm]	OK				N	Width [mm]		Depth [mm]	
				RICON 1	L40/60 S	VS	100		160	
6 Pt				RICON 200/60 S VS		VS	100		220	
				RICON 200/80 S VS		VS	120		230	
An An				RICON 290/80 S VS		VS	120		320	
H	Table 6—Des				esign Fact	gn Factors ^[3]				
PB		Design Factors ^[3]								
	Connector	F _{45,KCC,Rd} [kN]	n ₄₅ ** (min)	K _{h,45} ** (min)	a _{1,min} ** [mm]	a _{2,min} ** [mm]	n ₄₅ ** (max)	K _{h,45} ** (max)	a _{1,max} ** [mm]	a _{2,max} ** [mm]
	RICON 140/60 S VS	34	7	5.9	247	529	10	8.25	313	683
	RICON 200/60 S VS	34	8	6.48	318	868	16	13.0	590	2061
	RICON 200/80 S VS	50	8	8.67	360	720	16	17.3	665	1678
	RICON 290/80 S VS	50	8	9.52	566	1980	25	26.8	1284	5189
	* A 80x305[mm] glulam l use of the 80mm PB widt ** n ₄₅ = number of scre factors used to calculate	PB would al th as an alte ws per conr the connec	so suit th rnative. nector pl ctor`s po	nis example late ; k _{h,45} lar momen	. The RICOI	N S VS conn the selecte	ector pla	ate is 5mm	thick, thus a	ıllowing for ₂are design
[1] EN 1995-1-1:2004, Eurocode 5: Design of Timber Struct	ures Part 1-1 ; [2] CCMC R	eport 13677	7-R SWG	ASSY [®] Fast	eners Code	Approval - (Canada ;	[3] ETA Re	eport 10/018	9

DESIGN EXAMPLE

CONCEALED | SELF-TIGHTENING | DEMOUNTABLE | VERSATILE

DESIGN EXAMPLE

CONCEALED | SELF-TIGHTENING | DEMOUNTABLE | VERSATILE

RICON[®] 140/60 S VS Design Example #5

DESIGN EXAMPLE #5: Design of Joint resisting uplift forces using 2-ASSY FT screws								
Design Assumptions and Connection Geometry Check:	"Design Example of Uplift Toe Screw" "according to CCMC Report 13677–R Product Code Approval" '							
	"Input Data:"							
	$\varphi := 0.90$ "Resistance Factor"							
* The angle to grain relationship must be	$\rho \coloneqq 490 \frac{\omega}{m^3} \qquad \text{``D.Fir Glulam Mean Oven-Dry Rel. Density (CSAO86, Table A.10.1)''} \\ \delta \coloneqq \text{if} (\rho < 440, 85, 80) = 80$							
checked in SB and PB. In this example the equivalent thread embedment in SB and PB	$angle := 45^*$ "Angle of Screw Axis to Member Grain Orientation"							
was selected resulting in a controlling with- drawal resistance within the SB. This is due to	$K_D \coloneqq 1.0$ "Standard Duration of Load Factor"							
the angle to grain relationship defined in the respective CCMC report. The angle is measured between the direction of the wood grain and	$K_{SF} \coloneqq 1.0$ "In–Service conditions Factor"							
the fastener axis. In this example this is:	d := 8 mm "Screw Diameter"							
α = 45° in SB and α = 90° in PB	$l_{tot} = 180 mm$ "Screw total length"							
	l_{ef} := 165 mm "Screw effective thread length (Length - Tip)"							
	"Assuming half of effective thread length will be embedded in each of the members:"							
	$p \coloneqq \frac{l_{ef}}{2} = 82.5 \qquad mm$							
	F3							

DESIGN EXAMPLE

CONCEALED | SELF-TIGHTENING | DEMOUNTABLE | VERSATILE

DESIGN EXAMPLE #5: Design of Joint resisting uplift forces using 2-ASSY FT screws

	ſ								
Design of toe screw withdrawal		Factored Withdrawal Resistance Values (P'rw) ^{see notes} [kN per 25.4mm thread penetration] (kN/1")							
Tesistunce	Nominal Diameter	Relative Density Values :							
		0.35	0.42	0.44	0.46	0.49	0.5 PSL	0.55	
The withdrawal resistance in this example	α = 90°								
(1.74kN/1") is controlled within the SB and the	6mm	0.81	1.16	1.24	1.35	1.53	0.89	1.92	
screw in angle $\alpha = 45^{\circ}$	8mm	1.08	1.55	1.64	1.80	2.04	1.20	2.57	
	10mm	1.35	1.94	2.05	2.24	2.54	1.49	3.21	
	12mm	1.62	2.33	2.47	2.70	3.05	1.80	3.84	
				α = 45°					
	6mm	0.69	1.00	1.06	1.16	1.31	0.77	1.66	
	8mm	0.93	1.33	1.41	1.54	1.74	1.02	2.20	
	10mm	1.20	1.67	1.76	1.92	2.18	1.27	2.75	
	12mm	1.39	2.00	2.11	2.30	2.62	1.54	3.29	
				α = 30°					
	6mm	0.65	0.93	0.98	1.08	1.22	0.72	1.54	
	8mm	0.87	1.25	1.31	1.44	1.63	0.96	2.05	
	10mm	1.08	1.55	1.64	1.80	2.04	1.20	2.57	
	12mm	1.30	1.86	1.97	2.15	2.44	1.43	3.08	
	<u>Notes:</u> α = relative angle between screw axis to grain direction in timber member. Withdrawal values listed are in accord- ance with CCMC Report CCMC 13677-R and are only applicable to SWG ASSY® Engineered Structural Screws. The designer must verify that the factored withdrawal resistance does not exceed the factored tensile resistance. The designer must verify the actual thread embedment length of the screw. The effective thread embedment depth is the thread length—tip length (=d). For conditions other than K_D =1, K_{SF} =1 the designers must apply adjustment factors to values in the table above. Minimum effective thread penetration L_{ef} into main member required L_{ef} =4d (d=outside thread diameter). Factored Withdrawal Resistances calculated by: $P_{nw} = P'_{nw} \cdot L_{ef} \cdot n_{c} \cdot K' \cdot J_{F}$								
	"This is equivalent to 1.74 kN per 1" of thread penetration of factored withdrawal capacity" "The total resistance will be this pull-out per inch value multipled by the minimum " "penetration depth:" $P_{rwa} \approx 1.74 \cdot \left(\frac{p}{25 \ 4}\right) = 5.652 kN$ "per screw at 45 degrees"								
	"Now, we need to calculate the corresponding Vertical Uplift Force this screw" "can withstand acting at 90 degrees relative to the grain orientation of the member:" $\alpha := 45 \cdot \frac{\pi}{180} = 0.785$								
	$Uplift \coloneqq P_{rwa} \cdot (\sin(\alpha)) = 3.996$ "per screw" "Using 2 screws as toe screws:"								
	$n \coloneqq 2$								
	$Uplift \coloneqq Uplift \cdot 2$	=7.993	kN "I	Factored Re	esistance to	Uplift"			