

Full thread SWG ASSY[®] Screws as Reinforcement

WOOD you like to CONNECT?

CONTACT US ales@my-ti-con.com West Coast 604.349.8426 East Coast 438.862.1226

> Fechnical Support 604.347.7049

info@my-ti-con.com

Conditions of use and requirements as reinforcement perpendicular to the grain

External loads on cross connections, notched beams, beams with holes, curved or pitched beams cause stress perpendicular to the grain. As perpendicular to grain splitting is among the weakest properties of wood forces in this direction typically challenge the designer.

Whenever the perpendicular to grain stress exceeds the resistance reinforcement is required.

This document provides design proposals and examples on designing perpendicular to grain reinforcements with full thread screws and does not cover any other potentially required designs of a structural member.

For tensile reinforcement perpendicular to the grain only SWG ASSY[®] VG screws with full thread shall be used. The screws are driven into the member perpendicular to the contact surface at an angle between screw axis and wood grain of 90°.

The provided design proposals are only applicable to the following timber species:

- Solid timber [softwood or hardwood (species beech or oak)]
- Glue-laminated timber
- Glued solid timber made of softwood or special hardwood (species beech or oak)
- Laminated Veneer Lumber (LVL)

Notched beam reinforcement

Notched beams experience stress concentrations which may exceed specified capacities of the beam. In these areas a combination of stresses may require beam reinforcement.

Reinforcement can be applied using self-tapping full thread SWG ASSY® VG screws. It is assumed that a check or split has already occurred in the corner of the notch and the entire transverse shear force occurring in the lower portion of the beam is to be transmitted through an axial force component in the screw. In longitudinal direction of the beam only one screw row shall be taken into account.

DESIGN NOTCHED BEAM REINFORCEMENT			
Conditions of use	rectangular glue-laminated timber member with notch at the tension side at supports		
Geometry	b = beam width h = beam depth n = notch depth h _e = distance from potential crack to the edge		
Effective thread length	$I_{eff,1}$ = threaded length below potential crack $I_{eff,2}$ = threaded length above potential crack V_f		
Longitudinal shear resistance [1]	$\mathbf{F}_{\mathbf{v}} = f_{\mathbf{v}} \left(K_{\mathrm{D}} K_{\mathrm{H}} K_{\mathrm{Sv}} K_{\mathrm{T}} \right) \left[\mathrm{N/mm}^2 \right]$		
Maximum shear resistance [1]	V _{r,max}		
Existing bearing reaction shear force	V _f		
CONDITION	IF $V_f \ge V_{r, max}$ REINFORCEMENT IS REQUIRED		
CONDITION Factors [2]	$\label{eq:relation} \begin{array}{l} \mbox{IF $V_f \geq V_{r, \mbox{ max}}$ REINFORCEMENT IS REQUIRED} \\ \\ \mbox{α} &= (h_e/h) \end{array}$		
CONDITIONFactors [2] $(k_{\alpha} values for standard \alpha ratios arecalculated in table 2)$	IF $V_f \ge V_{r, max}$ REINFORCEMENT IS REQUIRED α = (he/h) k_{α} = 1.3 * [3 * $(1-\alpha)^2 - 2 * (1-\alpha)^3$]		
CONDITION Factors [2] (k _α values for standard α ratios are calculated in table 2) Tensile design force [2] to be transmitted by the reinforcing SWG ASSY® VG screws	IF $V_f \ge V_{r, max}$ REINFORCEMENT IS REQUIRED α = (h_e/h) k_{α} = 1.3 * [3 * (1- α) ² - 2 * (1- α) ³] $V_{r,t,90}$ = k_{α} * V_f		
CONDITIONFactors [2] (kα values for standard α ratios are calculated in table 2)Tensile design force [2] to be transmitted by the reinforcing SWG ASSY® VG screwsboundary conditions for screw design	IF $V_f \ge V_{r, max}$ REINFORCEMENT IS REQUIRED α = (h_e/h) k_{α} = 1.3 * [3 * (1- α) ² - 2 * (1- α) ³] $V_{r,t,90}$ = k_{α} * V_f effective screw length: I_{eff} = min { $I_{eff,1}$; $I_{eff,2}$ }		
CONDITION Factors [2] (k _α values for standard α ratios are calculated in table 2) Tensile design force [2] to be transmitted by the reinforcing SWG ASSY® VG screws boundary conditions for screw design withdrawal resistance [12]	IF $\forall_{f} \ge \forall_{r, max}$ REINFORCEMENT IS REQUIRED α = (h_e/h) k_{α} = 1.3 * [3 * (1- α) ² - 2 * (1- α) ³] $V_{r,t,90} = k_{\alpha} * V_{f}$ effective screw length: $l_{eff} = min \{l_{eff,1}; l_{eff,2}\}$ minimum penetration depth: $p_{min} = 4 * D$ (outside thread diameter) $\le l_{eff}$ (smaller penetration can not be taken into account for beam reinforcement)		
CONDITION Factors [2] (ka values for standard a ratios are calculated in table 2) Tensile design force [2] to be transmitted by the reinforcing SWG ASSY® VG screws boundary conditions for screw design withdrawal resistance [12] Withdrawal resistance of one SWG ASSY® VG screw (refer to table 1)	$IF \forall_{f} \ge \forall_{r, max} REINFORCEMENT IS REQUIRED$ $\alpha = (h_{e}/h)$ $k_{\alpha} = 1.3 * [3 * (1-\alpha)^{2} - 2 * (1-\alpha)^{3}]$ $V_{r,t,90} = k_{\alpha} * V_{f}$ $effective screw length: l_{eff} = min \{l_{eff,1}; l_{eff,2}\}$ $miniwum penetration depth: p_{min} = 4 * D (outside thread diameter) \le l_{eff}$ $(smaller penetration can not be taken into account for beam reinforcement)$ $P'_{rw,\alpha} = min \begin{cases} withdrawal resistance [kN/20 mm] * l_{eff} \\ tensile resistance \end{cases}$		

<u>Note:</u> ¹ considering an effective number of screws $n_{eff} = n^{0.9}$ as per [13]

EXAMPLE NOTCHED BEAM REINFORCEMENT			
Example	GL 24f-E 215 x 456 mm (8.5 x 18"), $K_D = K_H = K_{Sf} = K_T = 1$, single span over 6 m (19.7')		
Geometry			
Effective thread length	$I_{eff,1} = 100 - 15 \text{ (unthreaded head)} = 85 \text{ mm}$ $I_{eff,2} = I_{screw} - n - I_{tip} (=D) =$ $= 180 - 100 - 10 = 70$ V_{f}		
Longitudinal shear resistance	$F_v = 2 * 1 = 2 N/mm^2$		
Maximum shear resistance [1]	$K_N = (1-100/456)^2 = 0.61$ $A_g = 215 * 456 = 98,040 \text{ mm}^2$ $V_{r,max} = 0.9 * 2 * 2/3 * 98,040 * 0.61 = 71.7 \text{ kN}$		
Existing bearing reaction shear force	V _f = 100 kN		
CONDITION	100 > 71.7 —> REINFORCEMENT IS REQUIRED		
Factors [2]	α = (356/456) = 0.78		
(k_{α} values for standard α ratios are calculated in table 2)	\mathbf{k}_{α} = 0.161 (table 2)		
Tensile design force [2] to be transmitted by the reinforcing SWG ASSY® VG screws	V _{r,t,90} = 0.161 * 100 = 16.1 kN		
boundary conditions for screw design	effective screw length: I _{eff} = min {70 ; 85} = 70 mm		
withdrawal resistance [12]	minimum penetration depth : $\mathbf{p}_{min} = 4 * 10 = 40 < 70$ \checkmark		
Withdrawal resistance of one SWG ASSY® VG screw (refer to table 1)	$P'_{rw,\alpha} = \min \begin{cases} 2.00 \text{ kN/20 mm} * 70 \text{ mm} = \frac{7 \text{ kN}}{19.2 \text{ kN}} \\ 19.2 \text{ kN} \end{cases}$		
Required number of reinforcing screws ¹	n _{screws} = ^{0.9} √(16.1 /7) = 2.5 → 3 screws of type SWG ASSY® VG CYL 10 x 180		

<u>Note:</u> ¹ considering an effective number of screws $n_{eff} = n^{0.9}$ as per [13]

Perpendicular connection members with reinforcement

Perpendicular to grain reinforcement may be required to reduce the potential of perpendicular to grain splitting. The zone at risk is in the outer row of fasteners to the edge of the beam.

Reinforcement can be applied using self-tapping full thread SWG ASSY® VG screws.

Outside of the connection only one screw row in longitudinal direction of the beam shall be taken into account.

DESIGN PERPENDICULAR CONNECTION WITH REINFORCEMENT			
Conditions of use	Perpendicular to grain loaded beam		
Geometry	<pre>b = beam width [mm] h = beam depth [mm] a = distance measured from the center of the upper row of fasteners (potential crack) to the loaded edge w = width of connection less the included fastener diameters</pre>		
Effective thread length	$I_{eff,1}$ = threaded length below potential crack $I_{eff,2}$ = threaded length above potential crack		
Tensile strength perpendicular to grain [1]	$\mathbf{F}_{tp} = f_{tp} \left(K_D K_H K_{Sf} K_T \right) \left[N/mm^2 \right]$		
Net tension resistance	$T_{r,tp,max} = \Phi (=0.7) * F_{tp} * A_n$ with $A_n = b * w [mm^2]$		
Existina vertical connection shear force	T _p		
	•p		
CONDITION	IF $T_P \ge T_{r,tp,max}$ REINFORCEMENT IS REQUIRED		
CONDITION factors [3]	$\label{eq:relation} \textbf{IF} \ \textbf{T}_{P} \geq \textbf{T}_{r,tp,max} \ \textbf{REINFORCEMENT IS REQUIRED}$ $\alpha \ = (a \ /h)$		
CONDITION factors [3] (k _{tp} values for standard α ratios are calculated in table 3)	$IF T_{P} \ge T_{r,tp,max} REINFORCEMENT IS REQUIRED$ $\alpha = (a / h)$ $k_{tp} = [1 - 3 * \alpha^{2} + 2 * \alpha^{3}]$		
CONDITION factors [3] (k _{tp} values for standard α ratios are calculated in table 3) Tensile design force [3] to be transmitted by the reinforcing SWG ASSY® VG screws	$IF T_{p} \ge T_{r,tp,max} REINFORCEMENT IS REQUIRED$ $\alpha = (a / h)$ $k_{tp} = [1 - 3 * \alpha^{2} + 2 * \alpha^{3}]$ $T_{r,tp,90} = k_{tp} * T_{p}$		
CONDITION factors [3] (k _{tp} values for standard α ratios are calculated in table 3) Tensile design force [3] to be transmitted by the reinforcing SWG ASSY® VG screws boundary conditions for screw design	$IF T_{p} \ge T_{r,tp,max} REINFORCEMENT IS REQUIRED$ $\alpha = (a / h)$ $k_{tp} = [1 - 3 * \alpha^{2} + 2 * \alpha^{3}]$ $T_{r,tp,90} = k_{tp} * T_{p}$ $effective screw length: l_{eff} = min \{l_{eff,1}; l_{eff,2}\}$		
CONDITION factors [3] (k _{tp} values for standard α ratios are calculated in table 3) Tensile design force [3] to be transmitted by the reinforcing SWG ASSY® VG screws boundary conditions for screw design withdrawal resistance [12]	$IF T_{p} \ge T_{r,tp,max} REINFORCEMENT IS REQUIRED$ $\alpha = (a / h)$ $k_{tp} = [1 - 3 * \alpha^{2} + 2 * \alpha^{3}]$ $T_{r,tp,90} = k_{tp} * T_{p}$ $effective screw length: l_{eff} = min \{l_{eff,1}; l_{eff,2}\}$ $minimum penetration depth: p_{min} = 4 * D (outside thread diameter) \le l_{eff}$ (smaller penetration can not be taken into account for beam reinforcement)		
CONDITION factors [3] (k _{tp} values for standard α ratios are calculated in table 3) Tensile design force [3] to be transmitted by the reinforcing SWG ASSY® VG screws boundary conditions for screw design withdrawal resistance [12] Withdrawal resistance of one SWG ASSY® VG screw (refer to table 1)	$IF T_{p} \ge T_{r,tp,max} REINFORCEMENT IS REQUIRED$ $\alpha = (a / h)$ $k_{tp} = [1-3 * \alpha^{2} + 2 * \alpha^{3}]$ $T_{r,tp,90} = k_{tp} * T_{p}$ $effective screw length: l_{eff} = min \{l_{eff,1}; l_{eff,2}\}$ $minimum penetration depth: p_{min} = 4 * D (outside thread diameter) \le l_{eff}$ $(smaller penetration can not be taken into account for beam reinforcement)$ $P'_{rw,\alpha} = min \begin{cases} withdrawal resistance [kN/20 mm] * l_{eff} \\ tensile resistance \end{cases}$		

<u>Note:</u> ¹ considering an effective number of screws $n_{eff} = n^{0.9}$ as per [13]

Understanding & Specifying Engineered Structural SWG ASSY[®] Screws

EXAMPLE PERPENDICULAR CONNECTION WITH REINFORCEMENT			
GL 24f-E 130 x 456 mm (5-1/8 x 18"), $K_D = K_H = K_{Sf} = K_T = 1$, spacing between bolts (10 x 130 mm) is $S_P = 152$ mm (6"),			
b = 130 mm (5-1/8") h = 456 mm (18") a = 305 mm (12") w = 3 * S_p -3 * d (= bolt diameter) $\stackrel{Q}{=}$ $\stackrel{Q}{=}$ $\stackrel{W}{=}$ h			
$I_{eff,1} = 305 - 16 \text{ (unthreaded head)} = 289 \text{ mm}$ $I_{eff,2} = I_{screw} - a - I_{tip} (\triangleq D) =$ $= 380 - 305 - 10 = 65 \text{ mm}$			
$F_{tp} = 0.83 * 1 [N/mm^2]$			
$T_{r,tp,max} = 0.7 * 0.83 * 55,380 = 32.1 \text{ kN}$ with $A_n = 130 * 426 = 55,380 \text{ mm}^2$			
T _p = 45 kN			
45 ≥ 32.1 —> REINFORCEMENT IS REQUIRED			
α = (305/456) = 0.67			
k _{tp} = 0.255			
k _{tp} = 0.255 T _{r,tp,90} = 0.255 * 45 = 11.5 kN			
k _{tp} = 0.255 T _{r,tp,90} = 0.255 * 45 = 11.5 kN effective screw length: I _{eff} = min {289 ; 65} = 65 mm			
k _{tp} = 0.255 T _{r,tp,90} = 0.255 * 45 = 11.5 kN effective screw length: leff = min {289; 65} = 65 mm minimum penetration depth: pmin = 4 * 10 = 40 < 65 ✓			
$k_{tp} = 0.255$ $T_{r,tp,90} = 0.255 * 45 = 11.5 \text{ kN}$ $effective screw length: l_{eff} = min \{289; 65\} = 65 \text{ mm}$ $minimum penetration depth: p_{min} = 4 * 10 = 40 < 65 \checkmark$ $P'_{rw,\alpha} = min \begin{cases} 2.00 \text{ kN}/20 \text{ mm} * 65 \text{ mm} = \frac{6.5 \text{ kN}}{19.2 \text{ kN}}$			

<u>Note:</u> ¹ considering an effective number of screws $n_{eff} = n^{0.9}$ as per [13]

Reinforcing openings and penetrations

Holes greater d = 50 mm (2") may weaken the effective cross section so that shear and normal stress travel at the hole are impacted. Resulting forces perpendicular to grain may require reinforcement.

Self-tapping full thread SWG ASSY® VG screws inserted on each side of the hole are a suitable reinforcement method.

Conditions of use ¹ for reinforced beam						
l _v ≥ h	l₂ ≥ max {h ; 300 mm}	l _A ≥ h/2	h _{ro (ru)} ≥ 0.25 *h	a ≤ h	a ≤ 2.5 *h _d	h _d ≤ 0.3 *h
<u>Note:</u> ¹ ac	ccording to [4]					
		→				
- 1	C SWG ASSY® VG C T Ha C H B				SWG ASSY® VG	A

<u>Note:</u>

- A potential crack on the **right side** of opening
- **B** potential crack on the **left side** of opening, if $F_{t,M,r} \leq F_{t,V,r}$
- C additional potential crack to B on the left side of opening, if $F_{t,M,r} > F_{t,V,r}$

right side:	side of opening or penetration away from bearing area
left side:	side of opening or penetration close to bearing area

DESIGN REINFORCEMENT FOR BEAMS WITH OPENINGS AND PENETRATIONS			
Conditions of use	beam with penetration in the high shear zone		
Geometry	b = beam width		
	h = beam depth		
	a = length resp. diameter of the hole		
Effective thread length	<u>Rectangular hole</u> : $I_{eff,1}$ = min { h_{ro} ; h_{ru} } less unthread head part $I_{eff,2}$ = remaining threaded length less tip length (tip length = outer thread diameter)		
	$\label{eq:circular hole:} \begin{array}{ll} \textbf{I}_{eff,1} = \min \left\{ h_{ro} + 0.15 \ ^{*}h_{d} \ ; \ h_{ru} + 0.15 \ ^{*}h_{d} \right\} \ \text{less unthread part} \\ \textbf{I}_{eff,2} = remaining \ threaded \ \text{length} \ \text{less tip length} \end{array}$		
Tensile strength perpendicular to grain [1]	$\mathbf{F}_{tp} = \mathbf{f}_{tp} \left(\mathbf{K}_{D} \mathbf{K}_{H} \mathbf{K}_{Sf} \mathbf{K}_{T} \right) \left[N/mm^{2} \right]$		
Design and reduction factors [5]	Rectangular hole: $I_{t,90} = 0.5 * (h_d + h)$ Circular hole: $I_{t,90} = 0.353 * h_d + 0.5 * h$		
	k _{t,90} = min{ (450/h) ^{0.5} ; 1}		
Net tension resistance [5]	$T_{r,tp,max} = 0.5 * I_{t,90} * b * k_{t,90} * \phi$ (=0.7) * F_{tp}		
External load at section	Q _f , M _f		
Reduced height [5]	Rectangular hole: $h_r = min \{h_{ro}; h_{ru}\}$ Circular hole: $h_r = min \{h_{ro} + 0.15 * h_d; h_{ru} + 0.15 * h_d\}$		
Design stress [5] at opening perpendicular-to-grain from shear	$F_{t,V,r} = (Q_f * h_d) / (4 * h) * [3-(h_d^2 / h^2)]$		
Design stress [5] at opening perpendicular-to-grain from bending	$F_{t,M,r} = 0.008 * M_f / h_r$		
Resulting design stress [5] at opening perpendicular-to-grain	$F_{t,r} = F_{t,V,r} + F_{t,M,r}$		
CONDITION	IF F _{t,r} ≥ T _{r,tp,max} REINFORCEMENT IS REQUIRED		
Tensile design force [5] to be transmitted by the reinforcing SWG ASSY® VG screws ¹	$\mathbf{F}_{t,r} = \mathbf{F}_{t,V,r} + \mathbf{F}_{t,M,r}$		
boundary conditions for screw design with-	effective screw length: $I_{eff} = min \{I_{eff,1}; I_{eff,2}\}$		
drawal resistance [12]	$\frac{\text{minimum penetration depth:}}{\text{(smaller penetration can not be taken into account for beam reinforcement)}} = \mathbf{p}_{min} = 4 * \mathbf{D}$		
Withdrawal resistance of one SWG ASSY® VG screw (refer to table 1)	P' _{rw,α} = min { withdrawal resistance [kN/20 mm] * I _{eff} tensile resistance		
Required number of reinforcing screws on one side of the hole ²	$n_{screws} = {}^{0.9} \sqrt{(F_{t,r} / P'_{rw,\alpha})}$		

<u>Note:</u> ¹ Additional reinforcement shall be designed if $F_{t,M,r} > F_{t,V,r}$

 $^2~$ considering an effective number of screws n_{eff} = $n^{0.9}\,\text{as}$ per [13]

Screws to be driven in on each side of opening sufficiently extending into the timber below and above opening.

Reinforcing pitched tapered beams

In pitched tapered beams radial tension stresses often limit the beam slope to 15° or less. Increased bending stress and tensile stress perpendicular-to-grain may occur at the apex cross section.

Reinforcement in the apex area may be applied using self-tapping full thread SWG ASSY® VG screws inserted over the beam depth in the high stressed zone.

Applicable to glue-laminated timber only.

DESIGN PITCHED TAPERED BEAM REINFORCEMENT			
Conditions of use	Pitched tapered beam with rectangular cross section		
Geometry	b= beam widthh= beam depth h_{ap} = beam depth at the apex r_{in} = inner radius at the apexr= $r_{in} + 0.5 h_{ap}$ (radius of curvature at centreline) α_{ap} = angle of the taper in the centre of the apex β = enclosed angle in radians		
Effective thread length [7]	Screws must penetrate the entire beam depth —> I _{screw} ≈ h Ieff,1 = half of the screw length less the unthreaded head part [mm] Ieff,2 = half of the screw length less 1*D (outer thread diameter) for the tip length [mm]		
Tensile strength perpendicular to grain [1]	$\mathbf{F}_{tp} = \mathbf{f}_{tp} \left(\mathbf{K}_{D} \mathbf{K}_{H} \mathbf{K}_{Sf} \mathbf{K}_{T} \right) \left[N/mm^{2} \right]$		
Factored bending moment resistance [1] based on radial tension strength	M _{rt}		
Design moment causing tensile stress	M _{r,ap}		
CONDITION	IF $M_{r,ap} \ge M_{rt}$ REINFORCEMENT IS REQUIRED		
CONDITION Factors [6]	IF $M_{r,ap} \ge M_{rt}$ REINFORCEMENT IS REQUIRED k_6 = 0.25 - 1.5 *tan α_{ap} + 2.6 *tan ² α_{ap}		
CONDITION Factors [6]	IF $M_{r,ap} \ge M_{rt}$ REINFORCEMENT IS REQUIRED k_6 = 0.25 - 1.5 *tan α_{ap} + 2.6 *tan ² α_{ap} k_7 = 2.1 *tan α_{ap} - 4 *tan ² α_{ap}		
CONDITION Factors [6]	IF $M_{r,ap} \ge M_{rt}$ REINFORCEMENT IS REQUIRED k_6 = 0.25 - 1.5 *tan α_{ap} + 2.6 *tan ² α_{ap} k_7 = 2.1 *tan α_{ap} - 4 *tan ² α_{ap} k_p = 0.2 *tan α_{ap} + k_6 *(h_{ap} /r) + k_7 *(h_{ap} /r) ²		
CONDITION Factors [6] Greatest tensile stress [6] perpendicular-to -grain at the apex due to bending moment	IF $M_{r,ap} \ge M_{rt}$ REINFORCEMENT IS REQUIRED k_6 = 0.25 - 1.5 *tan α_{ap} + 2.6 *tan ² α_{ap} k_7 = 2.1 *tan α_{ap} - 4 *tan ² α_{ap} k_p = 0.2 *tan α_{ap} + k_6 *(h_{ap} /r) + k_7 *(h_{ap} /r) ² $\sigma_{r,t,90}$ = k_p * (6 * $M_{r,ap}$) /(b * h_{ap} ²) [N/mm ²]		
CONDITION Factors [6] Greatest tensile stress [6] perpendicular-to -grain at the apex due to bending moment Spacing of fasteners [7]	IF $M_{r,ap} \ge M_{rt}$ REINFORCEMENT IS REQUIRED k_6 = 0.25 - 1.5 *tan $\alpha_{ap} + 2.6 *tan^2 \alpha_{ap}$ k_7 = 2.1 *tan $\alpha_{ap} - 4 *tan^2 \alpha_{ap}$ k_p = 0.2 *tan $\alpha_{ap} + k_6 *(h_{ap} / r) + k_7 *(h_{ap} / r)^2$ $\sigma_{r,t,90}$ = $k_p * (6 * M_{r,ap}) / (b * h_{ap}^2) [N/mm^2]$ 250 mm ≤ $a_1 \le 0.75 * h_{ap}$		
CONDITION Factors [6] Greatest tensile stress [6] perpendicular-to -grain at the apex due to bending moment Spacing of fasteners [7] Tensile design force [7] to be transmitted by the reinforcing ASSY® VG screws	IF $M_{r,ap} \ge M_{rt}$ REINFORCEMENT IS REQUIRED k_6 = 0.25 - 1.5 *tan $\alpha_{ap} + 2.6 *tan^2 \alpha_{ap}$ k_7 = 2.1 *tan $\alpha_{ap} - 4 *tan^2 \alpha_{ap}$ k_p = 0.2 *tan $\alpha_{ap} + k_6 *(h_{ap}/r) + k_7 *(h_{ap}/r)^2$ $\sigma_{r,t,90}$ = $k_p * (6 * M_{r,ap}) / (b * h_{ap}^2)$ [N/mm ²] 250 mm ≤ $a_1 \le 0.75 * h_{ap}$ $F_{t,r}$ = $\sigma_{r,t,90} * b * a_1$		
CONDITION Factors [6] Greatest tensile stress [6] perpendicular-to -grain at the apex due to bending moment Spacing of fasteners [7] Tensile design force [7] to be transmitted by the reinforcing ASSY® VG screws boundary conditions for screw design with-	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		
CONDITION Factors [6] Greatest tensile stress [6] perpendicular-to -grain at the apex due to bending moment Spacing of fasteners [7] Tensile design force [7] to be transmitted by the reinforcing ASSY® VG screws boundary conditions for screw design with- drawal resistance [12]	IF $M_{r,ap} \ge M_{rt}$ REINFORCEMENT IS REQUIRED k_6 = 0.25 - 1.5 *tan $\alpha_{ap} + 2.6 *tan^2 \alpha_{ap}$ k_7 = 2.1 *tan $\alpha_{ap} - 4 *tan^2 \alpha_{ap}$ k_p = 0.2 *tan $\alpha_{ap} + k_6 *(h_{ap}/r) + k_7 *(h_{ap}/r)^2$ $\sigma_{r,t,90}$ = $k_p * (6 * M_{r,ap}) / (b * h_{ap}^2) [N/mm^2]$ 250 mm \le $a_1 \le 0.75 * h_{ap}$ $F_{t,r}$ = $\sigma_{r,t,90} * b * a_1$ effective screw length: l_{eff} = min { $l_{eff,1}$; $l_{eff,2}$ }minimum penetration depth: $p_{min} = 4 * D$ (outside thread diameter) $\le l_{eff}$ (smaller penetration can not be taken into account for beam reinforcement)		
CONDITION Factors [6] Greatest tensile stress [6] perpendicular-to -grain at the apex due to bending moment Spacing of fasteners [7] Tensile design force [7] to be transmitted by the reinforcing ASSY® VG screws boundary conditions for screw design with- drawal resistance [12]	$IF M_{r,ap} \ge M_{rt} REINFORCEMENT IS REQUIRED$ $k_{6} = 0.25 - 1.5 * \tan \alpha_{ap} + 2.6 * \tan^{2} \alpha_{ap}$ $k_{7} = 2.1 * \tan \alpha_{ap} - 4 * \tan^{2} \alpha_{ap}$ $k_{p} = 0.2 * \tan \alpha_{ap} + k_{6} * (h_{ap} / r) + k_{7} * (h_{ap} / r)^{2}$ $\sigma_{r,t,90} = k_{p} * (6 * M_{r,ap}) / (b * h_{ap}^{2}) [N/mm^{2}]$ $250 mm \le a_{1} \le 0.75 * h_{ap}$ $F_{t,r} = \sigma_{r,t,90} * b * a_{1}$ $effective screw length: l_{eff} = min \{l_{eff,1}; l_{eff,2}\}$ $\min m penetration depth: p_{min} = 4 * D (outside thread diameter) \le l_{eff}$ $(smaller penetration can not be taken into account for beam reinforcement)$ $P'_{rw,\alpha} = min \begin{cases} withdrawal resistance [kN/20 mm] * l_{eff} \\ tensile resistance \end{cases}$		

<u>Note:</u> ¹ considering an effective number of screws $n_{eff} = n^{0.9}$ as per [13]

A minimum of 2 reinforcing screws evenly distributed in the highly stressed apex zone shall be applied. Required spacing, end and edge distances as per *table 6* to be followed.

EXAMPLE PITCHED TAPERED BEAM REINFORCEMENT			
Example	Pitched double-tapered beam: GL 24f-E 130 x 456 mm (5-1/8 x 18")		
Geometry	b= 130 mm (5-1/8")h= 456 mm (18") h_{ap} = 813 mm (32") r_{in} = 2800 mmr= 2800 + 0.5 *813 = 3206.5 mm α_{ap} = 39° β = 51.3° * $\pi/180^\circ$		
Effective thread length [7]	I _{screw} ≈ h = 456 mm —> SWG ASSY® VG Cyl 10x430 I _{eff,1} = 215—15 = 200 mm I _{eff,2} = 215—10 = 205 mm		
Tensile strength perpendicular to grain [1]	$F_{tp} = 0.83 * 1 \text{ N/mm}^2$		
Factored bending moment resistance [1] based on radial tension strength	A = 130 *813 = 105690 mm² $K_{Ztp} = 0.7$ $K_R = 7.0$ M_{rt} = 0.9 *0.83 *(130 *813²/6) *0.7 *7.0= 52.4 kNm(M_{rt} = 0.9 *0.83 *2/3 *105690 *3206.5 *0.7= 118.1 kNm)		
Design moment causing tensile stress parallel to the inner curved edge	M _{r,ap} = 70 kNm		
CONDITION	70 ≥ 52.4 —> REINFORCEMENT IS REQUIRED		
CONDITION Factors [6]	70 \geq 52.4 -> REINFORCEMENT IS REQUIREDk_6= 0.25 - 1.5 *tan 39 + 2.6 *tan ² 39 = 0.74k_7= 2.1 *tan 39 - 4 *tan ² 39 = - 0.92k_p= 0.2 *tan 39 + 0.74 *(813 / 3206.5) -0.92 *(813 / 3206.5) ² = 0.29		
CONDITION Factors [6] Greatest tensile stress [6] perpendicular-to -grain at the apex due to bending moment	70 \geq 52.4 -> REINFORCEMENT IS REQUIRED k_6 = 0.25 - 1.5 *tan 39 + 2.6 *tan ² 39 = 0.74 k_7 = 2.1 *tan 39 - 4 *tan ² 39 = - 0.92 k_p = 0.2 *tan 39 + 0.74 *(813 / 3206.5) - 0.92 *(813 / 3206.5) ² = 0.29 $\sigma_{r,t,90}$ = 0.29 * (6 *70 *10 ⁶) /(130 *813 ²) = 1.42 N/mm ²		
CONDITION Factors [6] Greatest tensile stress [6] perpendicular-to -grain at the apex due to bending moment Spacing of fasteners [7]	70 \geq 52.4 \rightarrow REINFORCEMENT IS REQUIRED k_6 = 0.25 - 1.5 *tan 39 + 2.6 *tan ² 39 = 0.74 k_7 = 2.1 *tan 39 - 4 *tan ² 39 = - 0.92 k_p = 0.2 *tan 39 + 0.74 *(813 / 3206.5) - 0.92 *(813 / 3206.5) ² = 0.29 $\sigma_{r,t,90}$ = 0.29 * (6 *70 *10 ⁶) /(130 *813 ²) = 1.42 N/mm ² 250 mm \leq 355 (14") \leq 600		
CONDITION Factors [6] Greatest tensile stress [6] perpendicular-to -grain at the apex due to bending moment Spacing of fasteners [7] Tensile design force [7] to be transmitted by the reinforcing ASSY® VG screws	$70 \ge 52.4 \longrightarrow$ REINFORCEMENT IS REQUIRED k_6 $= 0.25 - 1.5 * \tan 39 + 2.6 * \tan^2 39 = 0.74$ k_7 $= 2.1 * \tan 39 - 4 * \tan^2 39 = -0.92$ k_p $= 0.2 * \tan 39 + 0.74 * (813 / 3206.5) - 0.92 * (813 / 3206.5)^2 = 0.29$ $\sigma_{r,t,90}$ $= 0.29 * (6 * 70 * 10^6) / (130 * 813^2) = 1.42 N/mm^2$ 250 mm < 355 (14") < 600 $F_{t,r}$ $= 1.42 * 130 * 355 = 65.5 kN$		
CONDITION Factors [6] Greatest tensile stress [6] perpendicular-to -grain at the apex due to bending moment Spacing of fasteners [7] Tensile design force [7] to be transmitted by the reinforcing ASSY® VG screws boundary conditions for screw design with- drawal resistance [12]	$70 \ge 52.4$ \rightarrow REINFORCEMENT IS REQUIRED k_6 $= 0.25 - 1.5 * \tan 39 + 2.6 * \tan^2 39 = 0.74$ k_7 $= 2.1 * \tan 39 - 4 * \tan^2 39 = -0.92$ k_p $= 0.2 * \tan 39 + 0.74 * (813 / 3206.5) - 0.92 * (813 / 3206.5)^2 = 0.29$ $\sigma_{r,t,90}$ $= 0.29 * (6 * 70 * 10^6) / (130 * 813^2) = 1.42 N/mm^2$ $250 mm \le 355 (14") \le 600$ $F_{t,r}$ $= 1.42 * 130 * 355 = 65.5 kN$ $effective screw length:$ l_{eff} $= min \{200; 205\} = 200 mm$ $minimum penetration depth:$ $p_{min} = 4 * 10 = 40 < 200 \checkmark$		
CONDITION Factors [6] Greatest tensile stress [6] perpendicular-to -grain at the apex due to bending moment Spacing of fasteners [7] Tensile design force [7] to be transmitted by the reinforcing ASSY® VG screws boundary conditions for screw design with- drawal resistance [12] Withdrawal resistance of one SWG ASSY® VG screw (refer to table 1)	$70 \ge 52.4 \implies \text{REINFORCEMENT IS REQUIRED}$ $k_{6} = 0.25 - 1.5 * \tan 39 + 2.6 * \tan^{2} 39 = 0.74$ $k_{7} = 2.1 * \tan 39 - 4 * \tan^{2} 39 = -0.92$ $k_{p} = 0.2 * \tan 39 + 0.74 * (813 / 3206.5) - 0.92 * (813 / 3206.5)^{2} = 0.29$ $\sigma_{r,t,90} = 0.29 * (6 * 70 * 10^{6}) / (130 * 813^{2}) = 1.42 \text{ N/mm}^{2}$ $250 \text{ mm} \le 355 (14'') \le 600$ $F_{t,r} = 1.42 * 130 * 355 = 65.5 \text{ kN}$ $effective screw length: l_{eff} = \min \{200; 205\} = 200 \text{ mm}$ $\minimum \text{ penetration depth: } \mathbf{p}_{min} = 4 * 10 = 40 < 200 \checkmark$ $P'_{rw,\alpha} = \min \left\{ \begin{array}{c} 2.00 \text{ kN}/20 \text{ mm} * 200 \text{ mm} = 20 \text{ kN} \\ \underline{19.2 \text{ kN}} \end{array} \right\}$		

<u>Note:</u> ¹ considering an effective number of screws $n_{eff} = n^{0.9}$ as per [13]

A minimum of 2 reinforcing screws evenly distributed in the highly stressed apex zone shall be applied. Required spacing, end and edge distances as per *table 6* to be followed.

Perpendicular-to-grain splitting reinforcement in bolted connections

Bolted connections with multiple bolts per row may fail brittle due to splitting. Design codes reduce the effective number of bolts by at least 2/3 to reduce brittle failure through splitting.

Splitting perpendicular to grain can efficiently be reinforced using self-tapping full thread SWG ASSY® VG screws driven in perpendicular to the bolt axis.

The reinforcing screws with full thread shall be inserted behind the bolt (compression side) as close as possible. The reinforced connection allows to assume all bolts as active and higher connection capacities are achieved.

DESIGN REINFORCEMENT IN BOLTED CONNECTIONS			
Conditions of use	Bolted connection loaded parallel to grain with reinforcement		
Geometry	 b = beam width d = beam depth S_Q = spacing between bolts perpendicular to grain e_L = minimum bolt edge distance 		
Effective thread length	Ieff,1 = threaded length below lower potential crack Ieff,2 = threaded length above upper potential crack less 1*D (=outer thread diameter) for the tip length		
Connection parameters	P _r = factored shear resistance of one bolt		
	n _{sp} = number of shear planes per bolt		
Tensile design force [8] perpendicular-to-grain to be transmitted by the reinforcing ASSY® VG screws	$F_{r,t,90} = n_{sp} * 0.3 * P_r$		
boundary conditions for screw design	$\underline{effective \ screw \ length}: \qquad l_{eff} = \min \{l_{eff,1}; l_{eff,2}\}$		
withdrawal resistance [12]	minimum penetration depth: $p_{min} = 4 * D$ (outside thread diameter) $\leq I_{eff}$ (smaller penetration can not be taken into account for beam reinforcement)		
Withdrawal resistance of one SWG ASSY® VG screw (refer to table 1)	P' _{rw,α} = min { withdrawal resistance [kN/20 mm] * I _{eff} tensile resistance		
Required number of reinforcing screws ¹	$n_{screws} = {}^{0.9} \sqrt{(F_{r,t,90} / P'_{rw,\alpha})}$		

<u>Note:</u> ¹ considering an effective number of screws n_{eff} = n^{0.9} as per [13] Reinforcing screws **arranged adjacent to bolts**. Required spacing, end and edge distances as per *table 6* to be followed.

EXAMPLE REINFORCEMENT IN BOLTED CONNECTIONS				
Example	GL 20f-E 215 x 304 mm (8.5 x 12") connected to a beam with smallest bolt edge distance $e_L = 76$ mm (3") and bolt spacing perpendicular to grain $S_Q = 76$ mm (3"), $K_D = K_H = K_{Sf} = K_T = 1$			
Geometry	b = 215 mm (8.5") d = 304 mm (12") S _q = 76 mm (3") e _L = 76 mm (3") $s_{Q} = 76 mm (3")$			
Effective thread length	$I_{eff,1} = 76 - 15 \text{ (unthread part)} = 61 \text{ mm}$ $I_{eff,2} = 300 - 2*76 - 76 - 10 \text{ (= tip length)} = 62 \text{ mm}$			
Connection parameters	P _r = 5.5 kN			
	n _{sp} = 1			
Tensile design force [8] per bolt perpendicular-to-grain to be transmitted by the reinforcing ASSY® VG screws	F _{r,t,90} = 1 * 0.3 * 5.5 = 3.3 kN			
boundary conditions for screw design	effective screw length: $I_{eff} = min \{61; 62\} = 61 mm$			
withdrawal resistance [12]	minimum penetration depth : $\mathbf{p}_{min} = 4 * 10 = 40 < 61 \checkmark$			
Withdrawal resistance of one SWG ASSY® VG screw (refer to table 1)	$P'_{rw,\alpha} = \min \left\{ \begin{array}{c} 2.00 \text{ kN/20 mm} * 61 \text{ mm} = 6.1 \text{ kN} \\ 19.2 \text{ kN} \end{array} \right.$			
Required number of reinforcing screws ¹	$n_{screws} = {}^{0.9}\sqrt{(3.3/6.1)} = 0.51 \longrightarrow$ with 2 rows of fasteners 1 screw per row of type SWG ASSY [®] VG CYL 10 x 300 shall be used arranged adjacent to each row of bolts			

<u>Note:</u> ¹ considering an effective number of screws n_{eff} = n^{0.9} as per [13] Reinforcing screws **arranged adjacent to bolts**.

Required spacing, end and edge distances as per table 6 to be followed.

Compression reinforcement perpendicular to grain

When bearing loads exceed the compression strength of wood perpendicular to grain compression reinforcement may be applied using full thread SWG ASSY[®] VG screws. The screws are to be driven into the timber member perpendicular to grain top flush with the timber surface and with contact to the bearing plate to distribute the bearing force evenly.

Understanding & Specifying Engineered Structural SWG ASSY[®] Screws

DESIGN COMPRESSION REINFORCEMENT PERPENDICULAR TO GRAIN			
Conditions of use	End or intermediate beam on discrete support		
Geometry	 b = beam width h = beam depth a = distance from compressed area to beam end I_b = bearing length of support I_{eff} = threaded length less one outer thread diameter for the tip length I₁ = length between supports or incoming concentrated load n₀ = number of reinforcing screws arranged in a row parallel to grain S_P = spacing of reinforcing screws in a plane parallel to grain a_L = end distance of centre of gravity of threaded part in timber member e_L = edge distance of centre of gravity of threaded part in timber member 		
Strength in compression perpendicular to grain [1]	$\mathbf{F_{cp}} = \phi * f_{cp} * (K_D K_{Scp} K_T K_B K_{Zcp})$		
Factored compressive resistance perpendicular to grain [1]	Q,		
Compressive design force	Qf		
CONDITION	IF Q _f ≥	Q _r REINFORCEMENT IS REQUIRED	
<i>Effective length of distribution l_{ef,1} [9]</i>	$\frac{\text{Effective bearing length (I}}{I_{ef,1}} = I_b + p_l + p_r$	l <u>eft, right):</u>	
Compressive reduction factor for discrete supports [9]	<u>l₁ < 2h</u> k _{c,90} = 1.00	$I_{\underline{1}} \ge 2h$ $k_{c,90} = 1.75$ (glulam with $I_b \le 400$ mm) $k_{c,90} = 1.50$ (softwood solid sawn) $k_{c,90} = 1.00$ (hardwood)	
Design resistance [10] perpendicular-to- grain of a contact area	$\mathbf{R}_{cb,90,d} = \mathbf{k}_{c,90} * b * \mathbf{I}_{ef,1} * \mathbf{F}_{cp}$		
boundary conditions for screw design com- pression resistance [12]	Effective thread penetration length: Ieff minimum penetration depth: pmin = 4 * D (outside thread diameter) (smaller penetration can not be taken into account for beam reinforcement)		
Compression resistance of one SWG ASSY® VG screw (refer to table 1 and 4)	$\mathbf{P'}_{rw,\alpha} = \min \begin{cases} & \text{withdrawal resistance } [kN/20 \text{ mm}] * \mathbf{I}_{eff} & (refer to table 1) \\ & \text{tensile resistance} & (refer to table 1) \\ & \text{buckling resistance of the screw} & (refer to table 4) \end{cases}$		
Required number ¹ of reinforcing screws [10]	$n_{screws} = \frac{0.9}{\sqrt{\left[\left[Q_{f} - R_{cb,90,d}\right] / P'_{rw,\alpha}\right]}}$		
Effective contact length in the plane of the	End supports:	$I_{ef,2} = \{I_{eff} + (n_0 - 1) * S_p + \min(I_{eff}; a_L)\}$	
screw tips I _{ef,2} [10]	intermediate supports:	$I_{ef,2} = \{2 * I_{eff} + (n_0 - 1) * S_p\}$	
CONDITION [10]	$\mathbf{R}_{c,tip,90,d} = b * I_{ef,2} * F_{cp} \ge \mathbf{Q}_{f}$ $\longrightarrow otherwise screw length or number to be adjusted$		
<u>Note:</u> ¹ considering an effective number of screws n _{ef} Required spacing, end and edge distances as p	_{ff} = n ^{0.9} as per [13] per <i>table 6</i> to be followed		

MyTiCon Timber Connectors | #3-8287 124th St. | Surrey BC | V3W 9G2 | Canada | www.my-ti-con.com

Understanding & Specifying Engineered Structural SWG ASSY[®] Screws

EXAMPLE COMPI	RESSION REINFORCEMENT PERPENDICULAR TO GRAIN
Example	GL 24f-E 215 x 456 mm (8.5 x 18") with an end support potential reinforcement: SWG ASSY® VG CSK 10 x 160 mm
Geometry	
Strength in compression perpendicular to grain [1]	F _{cp} = 0.8 * 7 *1.0 = 5.6 N/mm ²
Factored compressive resistance perpendicular to grain [1]	\mathbf{Q}_{r} = K _B *l _b *b *F _{cp} = 1.1 *100 *215 *5.6 = 132.4 kN
Compressive design force	Q _f = 220 kN
CONDITION	220 ≥ 132.4 REINFORCEMENT IS REQUIRED
<i>Effective length of distribution l_{ef,1} [9]</i>	Effective bearing length (left, right): $\mathbf{p}_1 = \min \{ 30; 100; 750/2; 81 \} = 30 \text{ mm}$ $\mathbf{p}_r = \min \{ 30; 100; 750/2 \} = 30 \text{ mm}$ $\mathbf{l}_{ef,1} = 100 + 30 + 30 = 160 \text{ mm}$
Effective length of distribution I _{ef,1} [9] Compressive reduction factor for discrete	$\frac{\text{Effective bearing length (left, right): } \mathbf{p}_{1} = \min \{ 30 ; 100 ; 750/2; 81 \} = 30 \text{ mm}}{\mathbf{p}_{r}} = \min \{ 30 ; 100 ; 750/2 \} = 30 \text{ mm}}$ $\mathbf{l}_{ef,1} = 100 + 30 + 30 = 160 \text{ mm}}$ $750 < 2^{*} 456 = 912 \text{ mm}}$
Effective length of distribution I _{ef,1} [9] Compressive reduction factor for discrete supports [9]	$\frac{\text{Effective bearing length (left, right): } \mathbf{p}_{1} = \min \{ 30 ; 100 ; 750/2; 81 \} = 30 \text{ mm}}{\mathbf{p}_{r}} = \min \{ 30 ; 100 ; 750/2 \} = 30 \text{ mm}}$ $\mathbf{l}_{ef,1} = 100 + 30 + 30 = 160 \text{ mm}}$ $750 < 2^{*} 456 = 912 \text{ mm}}$ $\mathbf{k}_{c,90} = 1.00$
Effective length of distribution I _{ef,1} [9] Compressive reduction factor for discrete supports [9] Design resistance [10] perpendicular-to- grain of a contact area	$\frac{\text{Effective bearing length (left, right): } \mathbf{p}_{1} = \min \{ 30 ; 100 ; 750/2; 81 \} = 30 \text{ mm}}{\mathbf{p}_{r}} = \min \{ 30 ; 100 ; 750/2 \} = 30 \text{ mm}}$ $\mathbf{l}_{ef,1} = 100 + 30 + 30 = 160 \text{ mm}}$ $750 < 2^{*} 456 = 912 \text{ mm}}$ $\mathbf{k}_{c,90} = 1.00$ $\mathbf{R}_{c,90,d} = 1.00 * 215 * 160 * 5.6 = 192.6 \text{ kN}}$
Effective length of distribution I _{ef,1} [9] Compressive reduction factor for discrete supports [9] Design resistance [10] perpendicular-to- grain of a contact area boundary conditions for screw design	$\frac{\text{Effective bearing length (left, right): } \mathbf{p}_{1} = \min \{ 30 ; 100 ; 750/2; 81 \} = 30 \text{ mm}}{\mathbf{p}_{r} = \min \{ 30 ; 100 ; 750/2 \} = 30 \text{ mm}}$ $\mathbf{l}_{ef,1} = 100 + 30 + 30 = 160 \text{ mm}}$ $750 < 2^{*} 456 = 912 \text{ mm}}$ $\mathbf{k}_{c,90} = 1.00$ $\mathbf{R}_{c,90,d} = 1.00 * 215 * 160 * 5.6 = 192.6 \text{ kN}}$ $\frac{\text{Effective thread penetration length: } \mathbf{l}_{eff} = 150 \text{ mm}}$
Effective length of distribution l _{ef,1} [9] Compressive reduction factor for discrete supports [9] Design resistance [10] perpendicular-to- grain of a contact area boundary conditions for screw design withdrawal resistance [12]	Effective bearing length (left, right): $\mathbf{p}_1 = \min \{ 30 ; 100 ; 750/2; 81 \} = 30 \text{ mm}$ $\mathbf{p}_r = \min \{ 30 ; 100 ; 750/2 \} = 30 \text{ mm}$ $\mathbf{l}_{ef,1} = 100 + 30 + 30 = 160 \text{ mm}$ $750 < 2^* 456 = 912 \text{ mm}$ $k_{c,90} = 1.00$ $\mathbf{R}_{c,90,d} = 1.00 * 215 * 160 * 5.6 = 192.6 \text{ kN}$ Effective thread penetration length: $\mathbf{l}_{eff} = 150 \text{ mm}$ minimum penetration depth: $\mathbf{p}_{min} = 4 * 10 = 40 \le 150 \checkmark$
Effective length of distribution I _{ef,1} [9] Compressive reduction factor for discrete supports [9] Design resistance [10] perpendicular-to- grain of a contact area boundary conditions for screw design withdrawal resistance [12] Compression resistance of one SWG ASSY® VG screw (refer to table 1 and 4)	$\frac{\text{Effective bearing length (left, right): } \mathbf{p}_{1} = \min \{ 30 ; 100 ; 750/2; 81 \} = 30 \text{ mm} \\ \mathbf{p}_{r} = \min \{ 30 ; 100 ; 750/2 \} = 30 \text{ mm} \\ \mathbf{p}_{r} = \min \{ 30 ; 100 ; 750/2 \} = 30 \text{ mm} \\ 750 < 2^{*} 456 = 912 \text{ mm} \\ k_{c,90} = 1.00 \\ \mathbf{R}_{c,90,d} = 1.00 215 160 5.6 = 192.6 \text{ kN} \\ \hline \mathbf{R}_{c,90,d} = 1.00 215 160 5.6 = 192.6 \text{ kN} \\ \hline \text{Effective thread penetration length: } \mathbf{l}_{eff} = 150 \text{ mm} \\ \hline \text{minimum penetration depth: } \mathbf{p}_{min} = 4 10 = 40 \le 150 \checkmark \\ 2.00 [\text{kN}/20 \text{ mm}] 150 = \underline{15 \text{ kN}} (refer to table 1) \\ \mathbf{P'}_{rw,\alpha} = \min \left\{ \begin{array}{c} 19.2 \text{ kN} (refer to table 1) \\ 17.07 \text{ kN} (refer to table 4) \end{array} \right. $
Effective length of distribution l _{ef,1} [9] Compressive reduction factor for discrete supports [9] Design resistance [10] perpendicular-to- grain of a contact area boundary conditions for screw design withdrawal resistance [12] Compression resistance of one SWG ASSY® VG screw (refer to table 1 and 4) Required number of reinforcing screws ¹	$\frac{\text{Effective bearing length (left, right): } \mathbf{p}_{1} = \min \{ 30 ; 100 ; 750/2 ; 81 \} = 30 \text{ mm} \\ \mathbf{p}_{r} = \min \{ 30 ; 100 ; 750/2 \} = 30 \text{ mm} \\ \mathbf{p}_{r} = \min \{ 30 ; 100 ; 750/2 \} = 30 \text{ mm} \\ 750 < 2^{*} 456 = 912 \text{ mm} \\ k_{c,90} = 1.00 \\ \mathbf{R}_{c,90,d} = 1.00 \text{ *}215 \text{ *}160 \text{ *}5.6 = 192.6 \text{ kN} \\ \hline \mathbf{R}_{c,90,d} = 1.00 \text{ *}215 \text{ *}160 \text{ *}5.6 = 192.6 \text{ kN} \\ \hline \text{Effective thread penetration length: } \mathbf{l}_{eff} = 150 \text{ mm} \\ \hline \text{minimum penetration depth: } \mathbf{p}_{min} = 4 \text{ *}10 = 40 \le 150 \\ 2.00 \text{ [kN/20 mm] * 150 = } 15 \text{ kN} \text{ (refer to table 1)} \\ \mathbf{P}'_{rw,\alpha} = \min \left\{ \begin{array}{c} 19.2 \text{ kN} \text{ (refer to table 1)} \\ 17.07 \text{ kN} \text{ (refer to table 4)} \\ \hline \mathbf{n}_{screws} = \frac{0.9 \sqrt{(220 - 192.6)/15} = 1.95 \end{array} \right.$
Effective length of distribution l _{ef,1} [9] Compressive reduction factor for discrete supports [9] Design resistance [10] perpendicular-to- grain of a contact area boundary conditions for screw design withdrawal resistance [12] Compression resistance of one SWG ASSY® VG screw (refer to table 1 and 4) Required number of reinforcing screws ¹	$\frac{\text{Effective bearing length (left, right): } \mathbf{p}_{1} = \min \{ 30 ; 100 ; 750/2 ; 81 \} = 30 \text{ mm} \\ \mathbf{p}_{r} = \min \{ 30 ; 100 ; 750/2 \} = 30 \text{ mm} \\ \mathbf{p}_{r} = \min \{ 30 ; 100 ; 750/2 \} = 30 \text{ mm} \\ 750 < 2^{*} 456 = 912 \text{ mm} \\ k_{c,90} = 1.00 \\ \mathbf{R}_{c,90,d} = 1.00 \\ \mathbf{R}_{c,90,d} = 1.00 \\ ^{*} 215 \\ ^{*} 160 \\ ^{*} 5.6 = 192.6 \text{ kN} \\ \frac{\text{Effective thread penetration length: } \mathbf{l}_{eff} = 150 \text{ mm} \\ \text{minimum penetration depth: } \mathbf{p}_{min} = 4 \\ ^{*} 10 = 40 \le 150 \\ \checkmark \\ \mathbf{P}_{rw,\alpha} = \min \begin{cases} 2.00 \\ 19.2 \text{ kN} \\ 19.2 \text{ kN} \\ (refer to table 1) \\ 17.07 \text{ kN} \\ (refer to table 1) \\ 17.07 \text{ kN} \\ (refer to table 4) \end{cases} \\ \mathbf{n}_{screws} = \\ \frac{0.9 }{\sqrt{(220 - 192.6)/15}} = 1.95 \\ - > 2 \\ \text{SWG ASSY* VG CSK 10 x 160 screws distributed on 2 rows} \end{cases}$
Effective length of distribution l _{ef,1} [9] Compressive reduction factor for discrete supports [9] Design resistance [10] perpendicular-to- grain of a contact area boundary conditions for screw design withdrawal resistance [12] Compression resistance of one SWG ASSY® VG screw (refer to table 1 and 4) Required number of reinforcing screws ¹ Effective contact length in the plane of the screw tips l _{ef,2} [10]	$\frac{\text{Effective bearing length (left, right): } \mathbf{p}_{1} = \min \{ 30 ; 100 ; 750/2 ; 81 \} = 30 \text{ mm} \\ \mathbf{p}_{r} = \min \{ 30 ; 100 ; 750/2 \} = 30 \text{ mm} \\ \mathbf{l}_{ef,1} = 100 + 30 + 30 = 160 \text{ mm} \\ 750 < 2^{*} 456 = 912 \text{ mm} \\ \mathbf{k}_{c,90} = 1.00 \\ \mathbf{R}_{c,90,d} = 1.00 \times 215 \times 160 \times 5.6 = 192.6 \text{ kN} \\ \hline \mathbf{R}_{c,90,d} = 1.00 \times 215 \times 160 \times 5.6 = 192.6 \text{ kN} \\ \hline \text{Effective thread penetration length: } \mathbf{l}_{eff} = 150 \text{ mm} \\ \min \text{minimum penetration depth: } \mathbf{p}_{min} = 4 \times 10 = 40 \le 150 \checkmark \\ 2.00 [\text{kN}/20 \text{ mm}] \times 150 = \frac{15 \text{ kN}}{19.2 \text{ kN}} \text{ (refer to table 1)} \\ \mathbf{P'}_{rw,\alpha} = \min \begin{cases} 19.2 \text{ kN} \text{ (refer to table 1)} \\ 19.2 \text{ kN} \text{ (refer to table 1)} \\ 17.07 \text{ kN} \text{ (refer to table 4)} \end{cases} \\ \mathbf{n}_{screws} = \frac{0.9}{\sqrt{([220 - 192.6]/15)}} = 1.95 \\ -> 2 \text{ SWG ASSY}^{\circ} \text{ VG CSK 10 x 160 screws distributed on 2 rows} \\ \hline \text{End supports: } \mathbf{l}_{ef,2} = \{150 + (2-1) \times 76 + \min (150 ; 114)\} = 340 \text{ mm} \end{cases}$
Effective length of distribution l _{ef,1} [9] Compressive reduction factor for discrete supports [9] Design resistance [10] perpendicular-to- grain of a contact area boundary conditions for screw design withdrawal resistance [12] Compression resistance of one SWG ASSY® VG screw (refer to table 1 and 4) Required number of reinforcing screws ¹ Effective contact length in the plane of the screw tips l _{ef,2} [10] CONDITION [10]	$ \begin{array}{l} \hline \mbox{Effective bearing length (left, right): } {\bf p}_{1} = \min \left\{ 30 ; 100 ; 750/2 ; 81 \right\} = 30 \mbox{ mm} \\ {\bf p}_{r} = \min \left\{ 30 ; 100 ; 750/2 \right\} = 30 \mbox{ mm} \\ \hline \mbox{P}_{r} = \min \left\{ 30 ; 100 ; 750/2 \right\} = 30 \mbox{ mm} \\ \hline \mbox{P}_{r} = \min \left\{ 30 ; 100 ; 750/2 \right\} = 30 \mbox{ mm} \\ \hline \mbox{P}_{r} = \min \left\{ 30 ; 100 ; 750/2 \right\} = 30 \mbox{ mm} \\ \hline \mbox{P}_{ros,90} = 1.00 + 30 + 30 = 160 \mbox{ mm} \\ \hline \mbox{K}_{c,90} = 1.00 \\ \hline \mbox{R}_{c,90} = 1.00 \\ \hline \mbox{R}_{c,90,d} = 1.00 * 215 * 160 * 5.6 = 192.6 \mbox{ kN} \\ \hline \mbox{Effective thread penetration length: } \mbox{I}_{eff} = 150 \mbox{ mm} \\ \hline \mbox{minimum penetration depth: } \mbox{P}_{min} = 4 * 10 = 40 \le 150 \ \checkmark \\ \hline \mbox{2.00 [kN/20 \mbox{ mm}] * 150 = 15 \mbox{ kN} \ (refer to table 1) \\ \hline \mbox{P'}_{rw,\alpha} = \min \left\{ \begin{array}{c} 2.00 \[kN/20 \mbox{ mm}] * 150 = 15 \kbox{ kN} \ (refer to table 1) \\ 19.2 \kbox{ kN} \ (refer to table 1) \\ 17.07 \kbox{ kN} \ (refer to table 1) \\ 17.07 \kbox{ kN} \ (refer to table 4) \\ \hline \mbox{N}_{screws} = \frac{0.9 \\sqrt{[220 - 192.6]/15]} = 1.95 \\ \hline \mbox{-> 2 SWG ASSY* VG CSK 10 x 160 \screws distributed on 2 \rows \\ \hline \mbox{End supports: } \left{I}_{ef,2} = \{150 + (2-1) * 76 + \min (150 ; 114)\} = 340 \ \mbox{mm} \\ \hline \mbox{R}_{c,tip,90,d} = 215 * 340 * 5.6 = 409 \ \mbox{kN} \ge 220 \ \ \mbox{kN} \ \checkmark \end{tabular}$

<u>Note:</u> ¹ considering an effective number of screws $n_{eff} = n^{0.9}$ as per [13]

Required spacing, end and edge distances as per table 6 to be followed

Mechanically jointed beam

Upgrading existing beams can be achieved through several methods. One cost efficient approach is to utilise the mechanically jointed beam theory.

High performance SWG ASSY[®] VG screws have proven to be a simple and easy to apply tool. Strengthening of an existing timber element is achieved through a mechanical bond of the existing beam and the new lamellas screwed on at the top or bottom of the beam.

Key: (1) spacing: s_1 slip modulus: K_1 load: F_1 (2) spacing: s_3 slip modulus: K_3 load: F_3 Picture 1: mechanically jointed beams according to [11]

Understanding & Specifying Engineered Structural SWG ASSY® Screws

Effective section properties

	EXAMPLE MECHANICALLY JOINTED BEAM	
Example	GL 24f-E 130 x 456 mm (5-1/8 x 18") single spar uniform design load of 11.7 kN/m (800 lbf/ft) a of equal grade	n beam of 5.5 m (18') length with dding 3 lamellas of 38 mm (1-1/2")
Geometry	b = 130 mm = $b_1 = b_2$	beam width
	h ₁ = 3 *38 = 114 mm	added member depth
	h ₂ = 456 mm	original beam depth
	$A_1 = b^*h_1 = 130 * 114 = 14,820 \text{ mm}^2$	cross section of added member
	$A_2 = b^*h_2 = 130 * 456 = 59,280 \text{ mm}^2$	cross section of original beam
	γ _m = 1.3	material safety factor
	$E_{ser} = E_{mean}$ $E_{U} = E_{mean}/\gamma_{m} = 12,800/1.3 =$ $= 9846 \text{ N/mm}^{2} = E_{1} = E_{2}$	Serviceability modulus of elasticity Ultimate state design modulus of elasticity
	$I_1 = b * h_1^3 / 12 = 16,050,060 \text{ mm}^4$	moment of inertia added member
	$I_2 = b * h_2^3 / 12 = 1,027,203,840 \text{ mm}^4$	moment of inertia original beam
	s = 152.5 mm (6")	spacing between fasteners
	D	Outer thread diameter
	D _{shank}	Shank diameter
	Single span beam: I _{eff} = I _{span} = 5,500 mm	effective span length [11][multi-span beam: $I_{eff} = 0.8 * I_{span}$ cantilever: $I_{eff} = 2 * I_{cantilever}$]

Screw arrangements

Version 1: partial thread SWG ASSY[®] Screws inserted perpendicular

Version 2: full thread SWG ASSY[®] VG Screws inserted at an angle to the grain of $\alpha = 45^{\circ}$ (one directional)

Version 3: full thread SWG ASSY[®] VG Screws crossed and inserted at an angle to the grain of $\alpha = 45^{\circ}$

Shear design with partial thread SWG ASSY[®] Screws¹

EX	AMPLE MECHANICALLY JOINTED BEAM (Version 1)
Bearing reaction	V = 11.7 *5.5/ 2 = 32.2 kN
SHEAR DESIGN	* WITH PERPENDICULAR PARTIAL THREAD SWG ASSY® SCREWS
angle between screw axis & wood grain	$\alpha = 90^{\circ}$
SWG ASSY® screw specifications	SWG ASSY® Ecofast 10 x 240 (D _{shank} = 7.2 mm)
boundary conditions for screw design lateral	Screw penetration length Ip of SWG ASSY® Ecofast 10 x 240:
resistance	t_1 = 114 mmembedment in added member t_2 = 240-114-10 = 116 mmpenetration in original beam less one diameter t_2 = min { $t_2 : t_2$ }= 114 mm
	p minimum penetration depth: $\mathbf{p}_{min} = 4 * \mathbf{D}$ (outside thread diameter) = $4*10 = 40 < 114 \checkmark$ (smaller penetration can not be taken into account for beam reinforcement)
Slip modulus in shear plane [14] (ρ _k = 0.84 *SG *10 ³ : characteristic gravity)	Serviceability: $K_{ser} = \rho_k^{1.5}/25 * (D_{shank})^{0.8} = (0.84 * 0.49 * 10^3)^{1.5} / 25 * 7.2^{0.8} = 1620 \text{ N/mm}$ Ultimate state: $K_U = 2/3 * K_{ser}/\gamma_m = 2/3 * 2107/1.3 = 831 \text{ N/mm}$
	<u>Ultimate state design:</u> $K_1 = K_U = \underline{831} \text{ N/mm}$ (K ₃ = 0)
Effectivity of added member eccentricity to inertia [11] (γ ₃ = 0)	$ \gamma_1 = 1/(1 + \pi^2 * E_1 * A_1 * s/(K_1 * I_{eff}^2)) $ = 1/(1+ \pi^2 * 9,846* 14,820*152.5/(831 * 5,500^2) = 0.1027
Effectivity of original beam eccentricity to inertia [11]	$\gamma_2 = 1$
Distance of single member i centre of gravity to neutral stress axis [11] (a ₃ = 0)	$a_{2} = \gamma_{1}*E_{1}*A_{1}*(h_{1} + h_{2})/[2*(\gamma_{1}*E_{1}*A_{1} + 1*E_{2}*A_{2} + \gamma_{3}*E_{3}*A_{3})]$ $= 0.1027*9,846*14,820*(114 + 456)]/[2*(0.1027*9,846*14,820 + 9,846*59,280)]$ $= 7.13 \text{ mm}$ $a_{1} = (h_{1} + h_{2})/2 - a_{2} = (114 + 456)/2 - 7.13 = 277.87 \text{ mm}$
Effective moment of inertia [11]	$I_{eff} = (I_1 + \gamma_1 * A_1 * a_1^2) + (I_2 + 1 * A_2 * a_2^2) + (I_3 + \gamma_3 * A_3 * a_3^2)$ = (16,050,060 + 0.1027 *14,820 *277.87 ²) + (1,027,203,840 + 1 *59,280 *7.13 ²) = 1,163,784,856 mm ⁴
	$(EI)_{eff} = (E_1 * I_1 + E_1 * \gamma_1 * A_1 * a_1^2) + (E_2 * I_2 + E_2 * 1 * A_2 * a_2^2) + (E_3 * I_3 + E_3 * \gamma_3 * A_3 * a_3^2)$ = E * I _{eff} = 11,458,625,690,000 Nmm ²
Lateral resistance [1] of one SWG ASSY® VG screw	$P_{r,v} = minimum of shear failure modes (K_D = K_H = K_{Sf} = K_T = 1)$ = 2.62 kN (mode g with 114 mm penetration)
Lateral design force [11] to be transmitted by one vertical inserted ASSY [®] screw ¹ (α = 90°) —> Version 1	$V_{v,1} = V *(E_1 * \gamma_1 * A_1 * a_1 * s) / (EI)_{eff}$ = 32.2 *(9,846 *0.1027 *14,820 *277.87 *152.5) /11,458,625,690,000 = 1.78 kN per screw $V_{v,3} = V *(E_3 * \gamma_3 * A_3 * a_3 * s) / (EI)_{eff} = 0$
	P _{r,v} = 2.62 kN ≥ V _{v, 1} = 1.78 kN ✓

<u>Note:</u> ¹ To consider **fastener interaction** the required number of **screws per meter** as per shear design above should be **increased** according to [13] as follows: $n_{req} = {}^{0.9}\sqrt{n_{perm}}$

Required spacing, end and edge distances as per table 6 to be followed

Shear design with full thread SWG ASSY® VG Screws¹

EX	AMPLE MECHANICALLY JOINTED BEAM (Versi	on 2 & 3)
Extern bearing reaction force	V = 11.7 *5.5/ 2 = 32.2 kN	
SHEAR DE	ESIGN * WITH INCLINED FULL THREAD SWG AS	SY® VG SCREWS
angle between screw axis & wood grain	α = 45°	
SWG ASSY [®] screw specifications	SWG ASSY [®] VG 8 x 330	
boundary conditions for screw design	penetrated screw length of SWG ASSY® VG C	yl. 8 x 330:
withdrawal resistance [12]	$I_{eff,1} = \sqrt{2 * 114 - 15} = 146 \text{ mm}$	thread penetration in added member less un- threaded head
	$l_{eff,2} = 330 - \sqrt{2 * 114 - 8} = 160 \text{ mm}$ $l_n = \min\{l_{eff,1} : l_{eff,2}\} = 146 \text{ mm}$	thread penetration in original beam less one diameter for the tip length
	minimum penetration depth:	
	p _{min} = 4 * D (outside thread diameter) = 4 ³ (smaller penetration can not be taken into ac	*8 = 32 < 146 ✓ count for beam reinforcement)
Slip modulus [15,16] (ser: serviceability design U: ultimate design)	$\begin{array}{llllllllllllllllllllllllllllllllllll$	L/l _{eff,2} ^{0,4}) = 780*8 ^{0.2} /(1/146 ^{0.4} + 1/160 ^{0.4}) = 4419 N/mm /mm <u>esign)</u> N/mm
Effectivity of added member eccentricity to inertia [11] (γ ₃ = 0)	$\begin{aligned} \gamma_1 &= 1/(1 + \pi^2 * \mathbf{E}_1 * \mathbf{A}_1 * \mathbf{s}/(\mathbf{K}_1 * \mathbf{I}_{eff}^2)) \\ &= 1/(1 + \pi^2 * 9,846 * 14,820 * 152.5/(1133)) \end{aligned}$	3 * 5,500 ²) = 0.1350
Effectivity of original beam eccentricity to inertia [11]	γ ₂ = 1	
Distance of single member i centre of gravity to neutral stress axis [11] (a3 = 0)	$a_{2} = [\gamma_{1}*E_{1}*A_{1}*(h_{1} + h_{2})/[2*(\gamma_{1}*E_{1}*A_{1} + 1)]$ = [0.1350*9,846*14,820*(114 + 456)]/ = 9.30 mm $a_{1} = (h_{1} + h_{2})/2 - a_{2} = (114 + 456)/2 - 9.$	*E ₂ *A ₂ + γ ₃ *E ₃ *A ₃)] [2*(0.1350*9,846*14,820 + 9,846*59,280)] 30= 275.7 mm
Effective moment of inertia [11]	$I_{eff} = (I_1 + \gamma_1 * A_1 * a_1^2) + (I_2 + 1 * A_2 * a_2^2) + = (16,050,060 + 0.1350 * 14,820 * 275.) = 1,200,455,215 mm4$	(I ₃ + γ ₃ *A ₃ *a ₃ ²) 7 ²) + (1,027,203,840 + 1 *59,280 *9.30 ²)
	$(EI)_{eff} = (E_1 * I_1 + E_1 * \gamma_1 * A_1 * a_1^2) + (E_2 * I_2 + E_3)^2$ $= E * I_{eff} = 11,819,682,040,000 \text{ Nmm}^2$	2*1*A2*a2 ²)+0
Withdrawal resistance of one SWG ASSY® VG screw (refer to table 1)	P' _{r,w,α} = min expression for the second	ance [1.37 kN/20 mm] * 146 = <u>10 kN</u> : 19.2 kN
Tensile design force $V_{t,i}$ [11] to be transmitted by one inclined reinforcing ASSY® VG screw ¹ ($\alpha = 45^\circ$) —> Version 2	V _{v,1} = V *(E ₁ *y ₁ *A ₁ *a ₁ *s) / (EI) _{eff} = 32.2 *(9,846 *0.1350 *14,820 *275. = 2.26 kN per screw	7 *152.5) /11,819,682,040,000
$(V_{v,3} = V_{t,3} = 0)$	$V_{t,1} = V_{v,1} / (\cos \alpha) = 1.78 / \cos 45 = 3.19 k$	N per screw
	$P_{r,v} = 10 \text{ kN} ≥ V_{v,1} = 3.19 \text{ kN} ✓$	
Tensile design force V _{t,i} [11] to be transmitted by one crossed reinforcing ASSY® VG screw ¹ —> Version 3	$V_{t,1}$ = $V_{v,1}$ (2 *cos α) = 2.26 / (2*cos 45) =	= 1.60 kN per screw
	$P_{r,v}$ = 10 kN ≥ $V_{v,1}$ = 1.60 kN ✓	
<i>Note:</i> ¹ To consider fastener interaction the reg	uired number of screws per meter as per shear de	esign above should be increased according to [13] as

follows: $\mathbf{n}_{req} = \frac{0.9}{\sqrt{\mathbf{n}_{per} \mathbf{m}}}$. Required spacing, end and edge distances as per *table 6* to be followed

Design tables for SWG ASSY® VG screws

Table 1: Factored withdrawal resistance of SWG ASSY® VG screws in kN per 20 mm of thread penetration

	Factored withd	rawal resistan (only applic	ce * P' _{rw,α} per 2 able to SWG A	0 mm of threa SSY® VG screw	d penetration s)	in kN	
		N	lean oven dry r	elative density		ан.	Factored
Screw diameter in mm	0.35	0.42	0.44	0.46	0.49	0.50 (PSL)	tensile
		59	α ** =	90°			resistance in kN
6	0.63	0.91	0.97	1.06	1.20	0.70	9.04
8	0.85	1.22	1.29	1.41	1.60	0.94	15.12
10	1.06	1.52	1.61	1.76	2.00	1.17	19.2
12	1.27	1.83	1.94	2.12	2.40	1.41	24
			α ** =	45°			
6	0.54	0.78	0.83	0.91	1.03	0.60	9.04
8	0.73	1.04	1.11	1.21	1.37	0.80	15.12
10	0.91	1.31	1.38	1.51	1.71	1.00	19.2
12	1.09	1.57	1.66	1.81	2.06	1.21	24

Note: * resistance as per [12]

** α : angle between wood grain and screw axis

			Values	for k_{α} with	respect to tl	he ratio h _e /ł	ı			
h _e /h	00	01	02	03	04	05	06	07	08	09
0.5_	0.650	0.631	0.611	0.592	0.572	0.553	0.534	0.514	0.495	0.476
0.6_	0.458	0.439	0.420	0.402	0.384	0.366	0.349	0.331	0.314	0.297
0.7_	0.281	0.265	0.249	0.233	0.218	0.203	0.189	0.175	0.161	0.148
0.8_	0.135	0.123	0.111	0.100	0.089	0.079	0.069	0.060	0.052	0.044
0.9_	0.036	0.030	0.024	0.018	0.013	0.009	0.006	0.003	0.002	0.000

Table 2: values of k_{α} for standard beam sizes and connections

Table 3: values of k_{tp} for standard beam sizes and connections

			Values	for \mathbf{k}_{tp} with	respect to t	he ratio a /h	ļ			
a /h	00	01	02	03	04	05	06	07	08	09
0.5_	0.500	0.485	0.470	0.455	0.440	0.425	0.410	0.396	0.381	0.366
0.6_	0.352	0.338	0.323	0.309	0.295	0.282	0.268	0.255	0.242	0.229
0.7_	0.216	0.204	0.191	0.179	0.168	0.156	0.145	0.134	0.124	0.114
0.8_	0.104	0.095	0.086	0.077	0.069	0.061	0.053	0.046	0.040	0.034
0.9_	0.028	0.023	0.018	0.014	0.010	0.007	0.005	0.003	0.001	0.000

MyTiCon Timber Connectors | #3-8287 124th St. | Surrey BC | V3W 9G2 | Canada | www.my-ti-con.com

Design assumptions for SWG ASSY® VG screws as reinforcement

Table 4: buckling resistance * of one screw considering an angle between screw axis to wood grain of $\alpha = 90^{\circ}$

Contact MTC Solutions for the buckling resistance of ASSY Screws. Support@MTCSolutions.com

Table 5: timber densities		
	Timber densities	
Visually graded lumber	Glue-laminated timber	Mean oven dry relative density
Northern Species		0.35
Spruce-Pine-Fir		0.42
	Spruce-Pine-Fir	0.44
Hem-Fir	Hem-Fir	0.46
Douglas-Fir-Larch D-Fir-L	Douglas-Fir-Larch D-Fir-L	0.49
PSL, LVL, LSL	PSL, LVL, LSL	0.5

Table 6:Minimum spacing or distance for SWG ASSY® VG screws

SWG ASSY® VG scr	ews loaded axially
Minimum spacing or distance [12]	(D = outside thread diameter)
S _P Spacing parallel to grain	5D (7.5D in D-Fir-L)
S _Q Spacing perpendicular to grain	2.5D
a _L end distance	5D (7.5D in D-Fir-L)
e _L edge distance	3D

MyTiCon Timber Connectors

SWG ASSY[®] VG Cyl. (full thread)

Table 7	: SWG AS	SY® VG Cyl scr	ew s	pecifica	ntions	
Major Ø	Length	Thread Length	ե	Head Ø	Minor Ø	Bit
		mm				
	70	63				
	80	73				
	100	93				
	120	113				AW
6	140	133	6	8	3.8	30
	160	153				
	180	173				
	200	193				
8	160 to 300 in 20 mm increments 330 360 380 430 430 430 530 580	144 to 284 in 20 mm increments 314 344 364 414 464 514 564	8	10	5	AW 40
10	140 to 280 in 20 mm increments 300 320 to 400 in 20 mm increments 430 480 530 580 and longer	125 to 265 in 20 mm increments 280 305 to 380 in 20 mm increments 415 456 506 556 and longer	10	13.4	6.2	AW 50

Note: values listed in the table above are average measurements between upper and lower tolerance boundary

Head ø

Q

Length

Thread Length

SWG ASSY® VG CSK (full thread)

∕lajor Ø	Length	Thread Length	L	Head Ø	Minor Ø	Bit
*	: :	mm			ск .	
	120	103				
	140	123				
	160	143				
	180	163				
-	200	183			_	AW
8	220	203	8	14.8	5	40
	240	223				
	260	243				
	280	263				
	300	283				
10	140 to 400 in 20 mm increments 430 480 530 580 650 to 800 in 50 mm increments	125 to 385 in 20 mm increments 415 465 512 562 632 to 782 in 50 mm increments	10	19.6	6.2	AW 50
12	220 380 480 600	205 365 465 585	12	22.1	7.1	AW 50

References

- [1] CSA 086-09
- [2] European Technical Approval ETA-11/0190: A.3.2.2 Notched beam supports
- [3] European Technical Approval ETA-11/0190: A.3.2.1 Connection forces at an angle to the grain
- [4] Eurocode 5—DIN EN 1995-1-1/NA:2010-12: NA.6.8.4
- [5] Eurocode 5—DIN EN 1995-1-1/NA:2010-12: NA.6.7 (NA.4)
- [6] Eurocode 5—DIN EN 1995-1-1:2010-12: 6.4.3 (7) & (8) Double tapered, curved and pitched cambered beams
- [7] Eurocode 5—DIN EN 1995-1-1/NA:2010-12: NA.6.8.6
- [8] H.J Blass, J. Ehlbeck, H. Kreuzinger, G. Steck, *Erlaeuterungen zu DIN 1052:2004-08*, DGfH Innovations- und Service GmbH, Munich, 2004, 1. edition, *p.149*
- [9] Eurocode 5—DIN EN 1995-1-1:2010-12: 6.1.5(1)
- [10] European Technical Approval ETA-11/0190: Annex 2 Compression reinforcement perpendicular to the grain
- [11] Eurocode 5—DIN EN 1995-1-1:2010-12: B.2 Effective bending stiffness
- [12] CCMC report 'CCMC 13677-R'
- [13] Eurocode 5-DIN EN 1995-1-1:2010-12: 8.7.2(8) Axially loaded screws
- [14] DIN 1052-2004: G.1 Slip modulus for slender fasteners
- [15] European Technical Approval ETA-11/0190: A.1.3 Axially loaded screws
- [16] Francois Colling, *Holzbau: Grundlagen und Bemessung nach EC5*, Springer Vieweg, Mering (Germany), 2012
 3. edition, *p.290/291*
- [17] European Technical Approval ETA-11/0190: A.1.3.3 Compressive capacity

Find more resources for our modern timber connection systems, including technical design data, installation guides, CAD files, videos, research data and more white papers on our website

www.my-ti-con.com

Or

Contact us

sales@my-ti-con.com

1-866.899.4090

Technical Support

info@my-ti-con.com

1-866.899.4090