MyTiCon Timber Connectors White Paper

Structural Screw Technology in Tall Wood Buildings

WOOD you like to CONNECT?

CONTACT US

sales@my-ti-con.com

1.866.899.4090

Technical Support

1.866.899.4090

www.my-ti-con.com

Disclaimer

Understanding & Specifying Engineered Structural SWG ASSY® Screws

The information in this document is provided on an "as is" basis and for general information purposes only. While MTC Solutions aims to keep the information provided in this document complete, accurate, and in line with state-of-the-art design methods, MTC Solutions, its affiliates, employees, agents, or licensors do not make any representations or warranties of any kind, including, but not limited to, express or implied warranties of fitness for a particular purpose or regarding the content or information in this document, to the full extent permitted by applicable law.

The information in this document does not constitute engineering or other professional advice, and any reliance users place on such information is therefore strictly at their own risk. Images and drawings provided within this document are for reference only and may not apply to all possible conditions. MTC Solutions shall not be liable for any loss or damage of any kind, including indirect, direct, incidental, punitive, or consequential loss or damage arising out of, or in connection with, the information, content, materials referenced, or the use of any of the systems described in this document. Users may derive other applications which are beyond MTC Solutions' control. The inclusion of the systems or the implied use of this document for other applications is beyond the scope of MTC Solutions' responsibility.

MyTiCon Timber Connectors White Paper

What is presented in this White Paper with proposed design methods?

For the past two years Tall Wood Buildings have been one of the hottest topics in North American timber construction. Glulam manufacturing, machining and production, machining of engineered wood products such as Cross Laminated Timber (CLT), Laminated Veneer Lumber (LVL) and Laminated Strand Lumber (LSL) have advanced to a level where Tall Wood Buildings finally seem realistic in North America. Realising tall wood building poses many challenges to the industry. Among these challenges is connecting timber elements most cost efficiently. To design efficient timber connection systems for tall wood buildings one must understand the performance of each timber connection and how the behaviour of a single connection affects the performance of a structural system.

Since many of the required connection assemblies for tall wood have not yet been tested with North American timber products and very little design guidelines have been published, engineers are challenged to predict connection performances.

A master and PhD research project at the University of British Columbia (UBC) was launched in early 2014 and has now produced the first preliminary results on CLT connection system performances.

This White Paper summarizes the conducted initial tests and their respective preliminary results. Furthermore, preliminary design procedures (in LSD) to predict the performance of the respective connection systems are proposed and evaluated. The proposed design procedures and results shall be verified by a design professional in any case before applied in a structure. Proposed design capacities only consider the design of the fasteners. Timber element design checks are not included and must be verified by a qualified design professional.

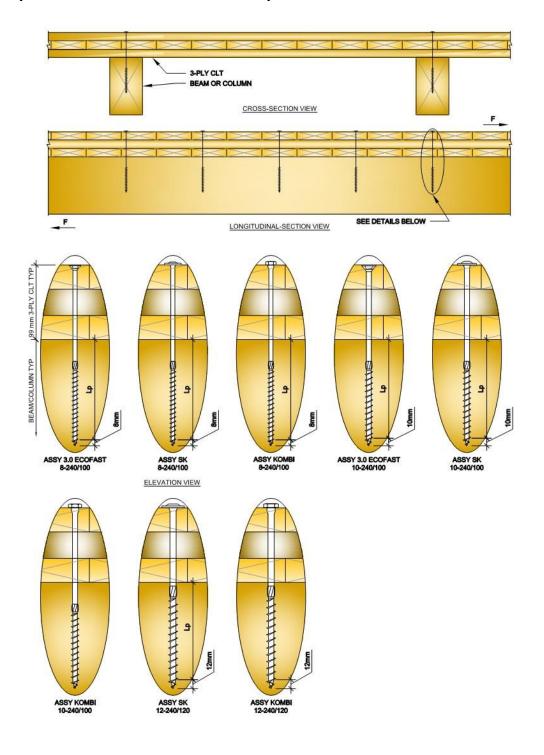
Understanding & Specifying Engineered Structural SWG ASSY® Screws

CLT panel to beam and panel to panel connection with SWG ASSY® screws

Panel to beam connections can be established utilizing a variety of connectors and connector arrangements. Depending on the purpose of the connection or expected system performances, three major connection types can be distinguished using either partial thread or full thread screws.

Option #1: partial thread screws perpendicular to the panel plane

Option #2: full thread screws arranged at a 45° angle to the panel plane


Option #3: full thread screws arranged cross wise at a 45° angle to the panel plane in panel to panel connection

Proposed DES	GIGN OPTION #1 - partial thread screw arranged at 90°						
Conditions of connection and connection requirements	The panel to beam connection is to be designed for 30kN/m under standard term loading. Loading condition: Two directional load parallel to beam axis						
	D-Fir glulam main member and Canadian S-P-F CLT side member connection with SWG ASSY KOMBI 10mm x 220mm @ 90° angle.						
	Note: Gap, check or split width in CLT panel shall not exceed the minor thread diameter of the screw.						
Geometry	 b = beam width 215mm h = beam depth 380mm h_{CLT} = 99mm (3-Ply CLT by Structurlam) 						
	Min panel thickness 99mm —> 10d = 10* 10 = 100mm ≈ 99mm						
Spacing, end and edge distance requirements	Screw spacing parallel = 4* d = 40mm						
in CLT side member [2]	Loaded end distance = 6* d = 60mm						
	Unloaded edge distance = 2.5* d = 25mm						
Spacing, end and edge distance requirements	Screw spacing parallel = 10.5* d = 105mm						
in glulam main member [1]	Loaded end distance = 15* d = 150mm						
	Unloaded edge distance = 7*d = 70mm						
	Spacing perpendicular to grain = 7* d = 70mm						
Effective embedment length	$L_{p,1}$ = side member = 99mm $L_{p,2}$ = main member = 220mm - 99mm - 10mm = 111mm						
	Note: Effective thread embedment is reduced by 1xd where d = screw diameter screw in angle α = 90°						
Shear resistance design Pr [1], [4]	$d_F = 7.2$ mm (shank diameter of screw) $-> f_1 = 95.6 * d^{0.5} * G^{1.05} = 14.32 \text{ N/mm}^2 -> f_2 = 50G* (1-0.01d_f) = 22.73 \text{N/mm}^2 -> t_1 = 99 \text{mm} -> t_2 = 111 \text{mm} -> f_y = 942 \text{ N/mm}^2$						
	Computing through Johansen Yield Theory failure modes (a) through (f)						
	(a) = $10.2kN$ —> (b) = $19.8kN$ —> (c) = $3.9kN$ —> (d) = $4.4kN$ —> (e) = $6.0kN$ —> (f) = $3.8kN$						
	$K_D = 1.0 -> K_{SF} = 1.0 -> K_t = 1.0 -> \varphi = 0.6 -> J_{pl} = 1.0 -> J_G \approx 0.82$						
Design shear resistance	3.8kN* 0.6* 1000mm/120mm* 1*1*1*1 *0.82= 15.58kN						
Required effective number of fasteners	30kN / 15.58kN = 1.92 ≈ 2 rows @70mm from edge each side @ 120mm o.c. staggered						
Lateral deformation estimate of screw joint [6]	K_p = (5.04*G-0.29)*J $_y$ K $_{SF}$ J $_G$ —> K $_Q$ = (5.04*G-0.29)*J $_Q$ K $_{SF}$ J $_G$ —> cross layers of CLT consideration with average of K $_p$ and K $_Q$						
	$\Delta = P/((K_p + K_Q)/2)*d_f*t_2*n_f = 1.16mm$						
	G=0.42; J_Y =1; J_Q =0.97 (7.2mm shank diameter); d_F =7.2; n_f = 1000/120*2= 20; P= 30kN						
Connection specification	Use 2 rows of SWG ASSY Kombi 10x220. Fasteners spaced 120mm o.c Stagger screws with 25mm offset away from beam edge						

CLT panel to beam connection example with SWG ASSY® screws @90°

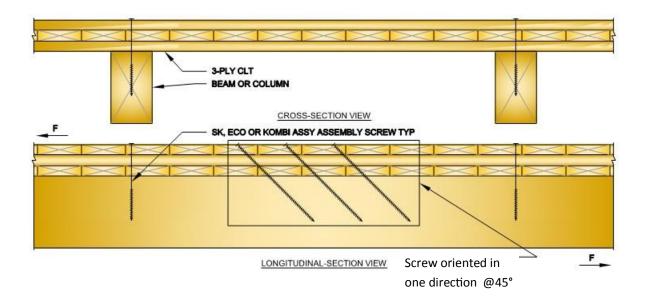
Understanding & Specifying Engineered Structural SWG ASSY® Screws

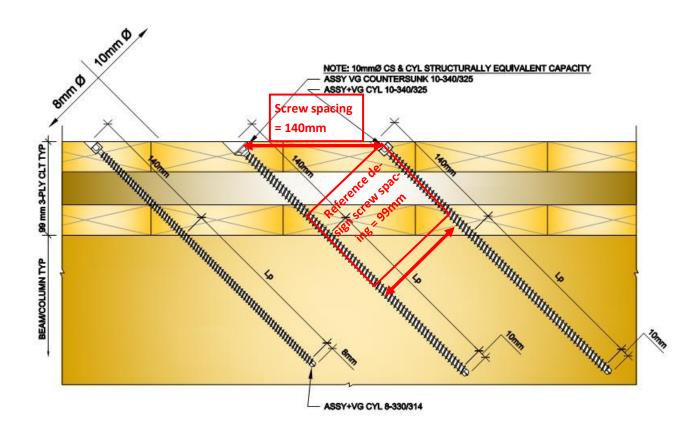
CLT panel to beam and panel to panel connection with SWG ASSY® screws

Panel to beam connections can be established utilizing a variety of connectors and connector arrangements. Depending on the purpose of the connection or expected system performances, three major connection types can be distinguished using either partial thread or full thread screws.

Option #1: partial thread screws perpendicular to the panel plane

Option #2: full thread screws arranged at a 45° angle to the panel plane


Option #3: full thread screws arranged cross wise at a 45° angle to the panel plane in panel to panel connection


Proposed [DESIGN OPTION #2 - full thread screw arranged at 45°					
Conditions of connection and connection	The panel to beam connection is to be designed for 50kN/m under standard term loading. Loading condition: One directional load.					
requirements	D-Fir glulam main member and Canadian S-P-F CLT side member connection with SWG ASSY VG CYL 8mm x 330mm @ 45° angle and ASSY SK 8x300 assembly screw to assure panel firmly bearing on beam					
	Note: Gap, check or split width in CLT panel shall not exceed the minor thread diameter of the screw.					
Geometry	 b = beam width 130mm h = beam depth 300mm h_{CLT} = 99mm (3-Ply CLT planed by Structurlam) 					
	Min panel thickness 99mm —> 10d = 10* 8 = 80mm < 99					
Spacing, end and edge distance require-	Screw spacing parallel = 4* d = 32mm (measured perpendicular to fastener axis)					
ments in CLT side member [2]	Loaded end distance = 6* d = 48mm					
	Unloaded edge distance = 2.5* d = 20mm					
Spacing, end and edge distance require-	Screw spacing parallel = $7.5*$ d = $60mm$ (measured perpendicular to fastener axis)					
ments in glulam main member [1]	Loaded end distance = 7.5* d = 60mm					
	Unloaded edge distance = 2.5* d = 20mm					
	Spacing perpendicular to grain = 2.5* d = 20mm					
Effective thread embedment length	$L_{p,1}$ = side member = (99mm/cos α) - 8mm = 132mm $L_{p,2}$ = main member = 330mm - 140mm-8mm = 182mm					
	Note: Effective thread embedment is reduced by 1*d where d = screw diameter screw in angle α = 45°					
Withdrawal resistance [1]	Pr'w $_{\text{side}}$ = 1.04kN* (132mm/20mm) = 6.86 [kN] side member controls design					
	Pr'w main = 1.37kN* (182mm/20mm) = 12.46 [kN]					
Tensile resistance check screw [1]	15.12 kN > 6.86 kN					
Design shear resistance per screw	F = 4.85kN 6.86					
Required effective number of fasteners per meter of connection	$50kN / 4.85kN = 10.3$ effective screws required —> considering an effective number of screws $n_{eff} = n^{0.9}$ as per [3] use $14^{0.9} = 10.7 > 10.3$					
Serviceability limit state connection stiffness	$K_{ser} = 780 * d^{0.2} L_{p,i}^{0.4} = 8335 N/mm$					
estimate [5]	Est. connection stiffness along screw axis = 10.7*8335 N/mm = 89.18kN/mm					
	Est. connection stiffness parallel to shear plane = 89.18*cos45°= 63.06kN/mm					
	Note: only applicable to axially loaded full thread SWG ASSY VG screws					
Connection specification	Use 2 rows of 7 SWG ASSY VG per meter @ 140mm o.c and one row ASSY SK					
	@500 mm o.c.					

CLT panel to beam connection example with SWG ASSY® screws @45°

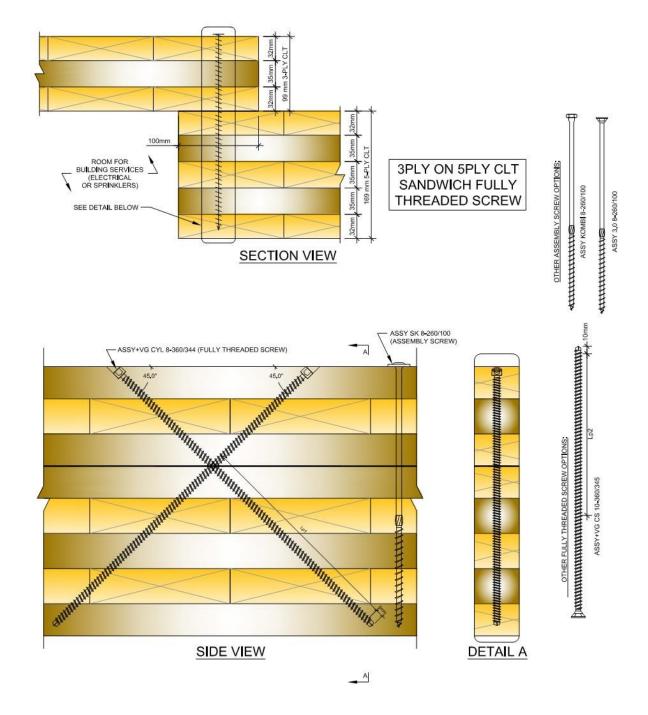
Understanding & Specifying Engineered Structural SWG ASSY® Screws

CLT panel to beam and panel to panel connection with SWG ASSY® screws

Panel to beam connections can be established utilizing a variety of connectors and connector arrangements. Depending on the purpose of the connection or expected system performances, three major connection types can be distinguished using either partial thread or full thread screws.

Option #1: partial thread screws perpendicular to the panel plane

Option #2: full thread screws arranged at a 45° angle to the panel plane


Option #3: full thread screws arranged cross wise at a 45° angle to the panel plane in panel to panel connection

Proposed DESIG	N OPTION #3 - full thread screw arr	ranged at 45° cross wise					
Conditions of connection and connection requirements	3-Ply S-P-F CLT side member conn with SWG ASSY VG CYL 8mm x 360	to be designed for 100kN/m under standard term directional load nected to 5-Ply S-P-F CLT main member 0mm @ 45° angle. el shall not exceed the minor thread diameter of the screw.					
Geometry	b = width overlap 100mm h _{CLT} = depth 3-Ply CLT = 99mm, 5- Min panel thickness 99mm —> 10	PLY CLT = 169mm (CLT by Structurlam) 0d = 10* 8 = 80mm < 99					
Spacing, end and edge distance requirements in CLT side and CLT main member [2]	Screw spacing parallel = 4* d = 32mm Screw spacing perpendicular = 2.5* d = 20mm Loaded end distance = 6* d = 48mm Unloaded edge distance = 2.5* d = 20mm						
Effective thread embedment length	$L_{p,1}$ = side member = (99mm/cos α) - 8mm = 132mm $L_{p,2}$ = main member = 360mm - 140mm-8mm = 212mm Note: Effective thread embedment is reduced by 1*d where d = screw diameter screw in angle α = 45°						
Withdrawal resistance [1]	Pr'w _{side} = 1.04kN* (132mm/20) Pr'w _{main} = 1.04kN* (212mm/20)	mm) = 6.86 [kN] side member controls design mm) = 11.02 [kN]					
Tensile resistance check screw [1]	15.12 kN > 6.86 kN						
Design shear resistance per screw cross	6.86kN 6.86kN	Required effective number of fasteners per meter of connection: 100kN / 9.7kN = 10.3 effective screw crosses required					
	$\alpha = 45^{\circ}$ 2*6.86kN*cos 45° = 9.7kN	Select 14 screw crosses to account for potential group effect —> 14 ^{0.9} = 10.7 —> 10.7 > 10.3					
Serviceability limit state connection stiffness estimate [5]	K _{ser} =780* d ^{0.2} *L _{p,i} ^{0.4} = 8335 N/mm Estimated connection stiffness parallel to shear plane per screw cross wi at 45° = 2*8335N/mm*cos45°= 11787N/mm Estimated connection stiffness parallel to shear plane with 10.7 effective i.e. effective screw crosses = 10.7*11.78kN/mm = 126.05kN/mm Note: only applicable to axially loaded SWG ASSY VG full thread screws						
Connection specification	Use 14 screw crosses (14 SWG AS direction)@70mm o.c. spacing. M tial thread ASSY 8mm x 260mm as	SY VG 8mm x 360mm per meter @45° in each lin. 25mm spacing between rows. Apply one parssembly screw @500mm o.c.					

CLT panel to panel connection example with SWG ASSY® screws @45° cross wise

Understanding & Specifying Engineered Structural SWG ASSY® Screws

CLT panel to beam connection with SWG ASSY® screws @ 45°

Fmax = maximum recorded force during test

Displ. Fmax = recorded displacement at Fmax

0.4 Fmax, 0.7 Fmax = recorded force at 40% of predicted ultimate capacity and respectively 70%

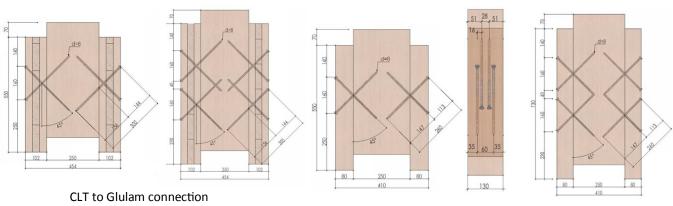
Displ. 0.4 Fmax, 0.7 Fmax = recorded displacement at respective force level

Stiffness ultimate = calculated stiffness at Fmax

Stiffness 0.4 Fmax, 0.7 Fmax = calculate stiffness at respective load level

Design value = Capacity as per outlined design example procedure proposal

Over-strength factor = Tested capacity/ design capacity


Table 1: Proposed connection design values vs obtained test values — Panel to beam connection with 45° screws

Design values vs Test values

Note: Values without bracket consider KD = 1.15 for shorty term loading (Values in brackets are standard term loading i.e. K_D = 1.0)

Specimen	Fmax [kN]	Displ. Fmax [mm]	0.4 Fmax [kN]	Displ. 0.4 Fmax [mm]	0.7 F max [kN]	Displ. 0.7 Fmax [mm]	Stiffness ultimate [kN/mm]	Stiffness 0.4 Fmax [kN/ mm]	Stiff- ness 0.7 Fmax [kN/ mm]	Design value [kN]	Over- strength	Predicted stiffness [kN/mm]
CLT to GL 8 - 8x300 FT@45°	143.6	3.48	57.5	1.58	100.5	2.41	37.6	36.39	41.7	≈44.62 (≈38.8)	3.21 (3.7)	≈47.1
CLT to GL 16 - 8x300 FT@45°	268	2.2	107.5	0.77	187.6	1.21	121.8	139.61	155.04	≈89.24 (≈77.6)	3.0 (3.45)	≈94.3
GL to GL 8 – 8x260 FT@45°	154.6	3.8	61.83	1.54	108	2.34	40.68	40.14	46.15	≈46.8 (≈40.7)	3.3 (3.79)	≈43.0
GL to GL 16 – 8x260 FT@45°	245	1.6	98	0.55	171	0.81	153.12	178.12	211.11	≈93.66 (≈81.45)	2.61 (3.0)	≈86.0

Note: Results listed in this table are average measurements out of 5 tests obtained from the positive load cycle. FT= Full Thread screw
A load duration factor of K_D = 1.15 and 1.0 is considered. **Dynamic loading was applied to all specimen. No dynamic reduction factors are applied to design values or stiffness values**

Glulam to Glulam connection

Understanding & Specifying Engineered Structural SWG ASSY® Screws

CLT panel to beam connection with SWG ASSY® screws @ 30°

Fmax = maximum recorded force during test

Displ. F max = recorded displacement at Fmax

0.4 F max, 0.7 F max = recorded force at 40% of predicted ultimate capacity and respectively 70%

Displ. 0.4 F max, 0.7 F max = recorded displacement at respective force level

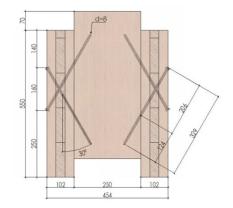
Stiffness ultimate = calculated stiffness at F max

Stiffness 0.4Fmax, 0.7Fmax = calculate stiffness at respective load level

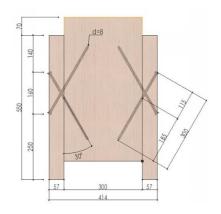
Design value = Capacity as per outlined design example procedure

Over-strength factor = Tested capacity/ design capacity

Table 2: Proposed connection design values vs obtained test values - Panel to beam connection with 30° screws


Design values vs Test values

Note: Values without bracket consider KD = 1.15 for short term loading (Values in brackets are standard term loading i.e. K_D= 1.0)


Specimen	Fmax [kN]	Displ. Fmax [mm]	0.4 Fmax [kN]	Displ. 0.4 Fmax [mm]	0.7 Fmax [kN]	Displ. 0.7 Fmax [mm]	Stiffness ultimate [kN/mm]	Stiffness 0.4 Fmax [kN/ mm]	Stiff- ness 0.7 Fmax [kN/ mm]	Design value [kN]	Over- strength	Predicted stiffness [kN/mm]
CLT to GL 8 - 8x330 FT@30°	172.6	3.01	69.04	1.22	120.82	1.87	57.34	56.59	64.60	≈59.15 (≈51.43)	2.91 (3.35)	≈56.32
GL to GL 8 – 8x300 FT@30°	200.8	3.22	80.33	1.26	140.57	1.97	62.36	63.75	71.35	≈54.56 (≈47.44)	3.66 (4.23)	≈57.7

Note: Results listed in this table are average measurements out of 5 test obtained from the positive load cycle. FT= Full Thread screw

A load duration factor of K_D = 1.15 and 1.0 is considered. **Dynamic loading was applied to all specimen. No dynamic reduction factors are applied to design values or stiffness values**

Glulam to Glulam connection

CLT to Glulam connection

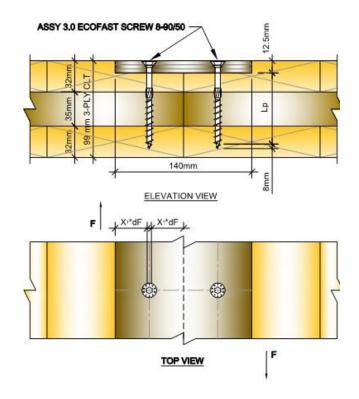
Understanding & Specifying Engineered Structural SWG ASSY® Screws

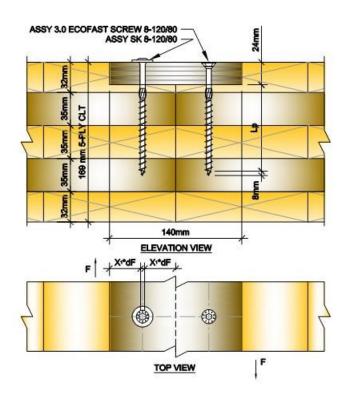
CLT panel to panel connection with SWG ASSY® screws

Panel to panel connections can be established utilizing a variety of connectors and connector arrangements. Depending on the purpose of the connection or expected system performances three major connection types can be distinguished using either partial thread or full thread screws. A variety of connection combinations are also possible.

Option #4: partial thread screws perpendicular to the panel plane in surface spline joint

Option #5: partial thread screws perpendicular to the panel plane in lap-joint

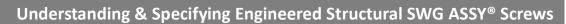

Option #6: full thread screws arranged cross wise at a 45° angle to the panel plane in lap-joint


Proposed DESIGN OPTION #4 -	partial thread screws perpendicular to the panel plane in surface spline joint					
Conditions of connection and connection requirements	The panel to panel connection is to be designed for 20kN/m under standard term loading. Loading condition: Two directional load parallel to panel spline.					
	Plywood side member and Canadian S-P-F CLT main member connection with SWG ASSY 3.0 Eco 8mm x 90mm @ 90° angle.					
	Note: Fasteners shall not be installed into cracks, checks, or gaps.					
Geometry	t = plywood thickness 19mm b = plywood width 176mm h _{CLT} = 105mm (3-Ply CLT planed by Structurlam)					
	Min panel thickness 105mm -> 10d = 10* 8 = 80mm < 105mm					
Spacing, end and edge distance requirements	Screw spacing parallel = 4* d = 32mm Loaded end distance = 6* d = 48mm					
in plywood side member [2]	Unloaded edge distance = 2.5* d = 20mm					
	Spacing perpendicular to grain = 2.5* d = 20mm					
	Note: Spacing, end and edge distance requirements in CLT was considered to be applicable for plywood					
Spacing, end and edge distance requirements	Screw spacing parallel = 4* d = 32mm					
in CLT main member [2]	Loaded end distance = 6* d = 48mm					
	Unloaded edge distance = 2.5* d = 20mm Spacing perpendicular to grain = 2.5* d = 20mm					
Effective and advant langet						
Effective embedment length	$L_{p,1}$ = side member = 19mm $L_{p,2}$ = main member = 90mm - 8mm-19mm= 63mm					
	Note: Effective thread embedment is reduced by 1xd where d = screw diameter screw in angle α = 90°					
Shear resistance design Pr [1], [4]	$d_F = 5.8$ mm (shank diameter of screw)—> $f_1 = 104$ G* (1-0.1 d_f) = 18.35 N/mm ² —> $f_2 =$					
	$95.6*d_f^{-0.5}G^{1.05} = 15.96N/mm^2 \longrightarrow t_1 = 19mm \longrightarrow t_2 = 53mm \longrightarrow f_y = 1015 N/mm^2$					
	Computing through Johansen Yield Theory failure modes (a) through (f)					
	(a) = $2.02kN$ —> (b) = $6.03kN$ —> (d) = $1.68N$ —> (e) = $2.66kN$ —> (f) = $1.61kN$ —> (g) = $2.56kN$ K _D , K _{sf} , K _t = 1.0 —> φ = 0.6 —> J _{pl} = 1 —> J _G = 0.81					
Design shear resistance	1.61kN* 0.6* 1000mm/32mm* 1*1*1*0.81 = 24.45kN					
Required effective fasteners per meter	20kN / 24.45kN = 0.81 ≈ 1 row @ 32mm o.c.					
Lateral connection deformation estimate [6]	$K_p = (5.04*G-0.29)*J_{\gamma} \ K_{SF} \ J_G \ \longrightarrow K_Q = (5.04*G-0.29)*J_{Q} \ K_{SF} \ J_G \ \longrightarrow cross \ layers \ of \ CLT \ consideration \ with \ average \ of \ K_p \ and \ K_Q$					
	$\Delta = P/((K_p + K_Q)/2)*d_f*t_2*n_f = 1.18mm$					
	G=0.42; J_Y =1; J_Q =0.97 (5.8mm shank diameter); d_F =5.8; n_f = 1000/64*2= 32; P= 20kN					
Connection specification	Use 2 rows of SWG ASSY Eco 8x90 (32pc total each side) @ 64mm o.c. Offset rows with 20mm spacing perpendicular to panel face.					

CLT panel to panel surface spline connection example with SWG ASSY® screws

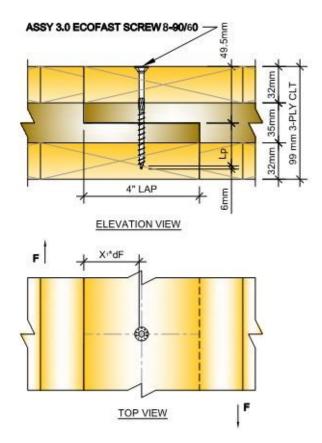
Understanding & Specifying Engineered Structural SWG ASSY® Screws

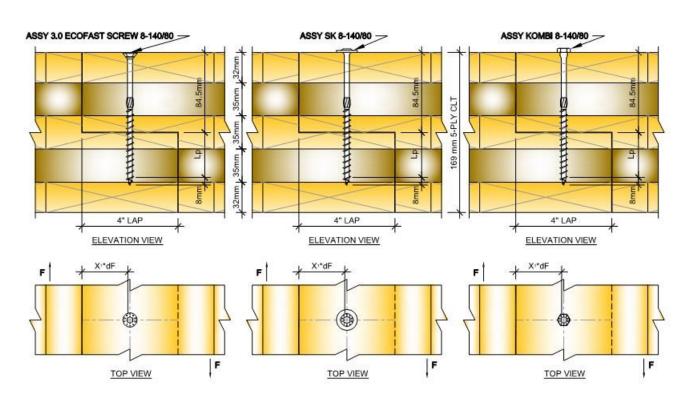
CLT panel to panel connection with SWG ASSY® screws


Panel to panel connections can be established utilizing a variety of connectors and connector arrangements. Depending on the purpose of the connection or expected system performances three major connection types can be distinguished using either partial thread or full thread screws. A variety of connection combinations are also possible.

Option #4: partial thread screws perpendicular to the panel plane in surface spline joint

Option #5: partial thread screws perpendicular to the panel plane in lap-joint


Option #6: full thread screws arranged cross wise at a 45° angle to the panel plane in lap-joint


Proposed DESIGN OPTION #	‡5 - partial thread screws perpendicular to the panel plane in lap-joint						
Conditions of connection and connection requirements	The panel to panel connection is to be designed for 25kN/m under standard term loading. Loading condition: Two directional load parallel to panel lap joint.						
	Canadian S-P-F CLT side member and Canadian S-P-F CLT main member connection with SWG ASSY 3.0 Eco 8mm x 90mm @ 90° angle.						
	Note: Fasteners shall not be installed into cracks, checks, or gaps.						
Geometry	 t = lap thickness 52.5mm b = lap width 80mm h_{CLT} = 99mm (3-Ply CLT planed by Structurlam) 						
	Min panel thickness 99mm —> 10d = 10* 8 = 80mm < 99mm						
Spacing, end and edge distance requirements	Screw spacing parallel = 4* d = 32mm						
in CLT side and CLT main member [2]	Loaded end distance = 6* d = 48mm						
	Unloaded edge distance = 2.5* d = 20mm						
	Spacing perpendicular to grain = 2.5* d = 20mm						
Effective embedment length	$L_{p,1}$ = side member = 49.5mm $L_{p,2}$ = main member = 90mm - 8mm-49.5mm= 32.5mm						
	Note: Effective thread embedment is reduced by 1xd where d = screw diameter screw in angle α = 90°						
Shear resistance design Pr [1], [4]	d_F = 5.8mm (shank diameter of screw) —> f_1 = f_2 = 95.6* d_f ^{-0.5} G ^{1.05} = 15.96N/mm ² —> t_1 = 52.5mm —> t_2 = 29.5mm —> t_y = 1015 N/mm ²						
	Computing through Johansen Yield Theory failure modes (a) through (f)						
	(a) = $4.5N$ —> (b) = $3.7kN$ —> (d) = $2.1N$ —> (e) = $1.9kN$ —> (f) = $1.6kN$ —> (g) = $2.47kN$						
	K_D , K_{sf} , $K_t = 1.0 \longrightarrow \varphi = 0.6 \longrightarrow J_{pl} = 0.7 \longrightarrow J_G = 0.85$						
Design shear resistance	1.6kN* 0.6* 1000mm/32mm* 1*1*1*0.85 *0.7 = 17.85kN						
Required effective fasteners per meter	25kN / 17.85kN = 1.4 ≈ 2 rows @ 62mm o.c.						
Lateral connection deformation estimate [6]	$K_p = (5.04*G-0.29)*J_q \ K_{SF} \ J_G \ \longrightarrow K_Q = (5.04*G-0.29)*J_Q \ K_{SF} \ J_G \ \longrightarrow cross \ layers \ of \ CLT \ consideration \ with \ average \ of \ K_p \ and \ K_Q$						
	Δ = P/ ((K _p + K _Q)/2)*d _f *t ₂ *n _f = 2.7mm Note: deformation exceed suggested maximum of \approx 1mm to prevent permanent deformation						
	G=0.42; J_Y =1; J_Q =0.97 (5.8mm shank diameter); d_F =5.8; n_f = 1000/62*2= 32; P= 25kN						
Connection specification	Use 2 rows of SWG ASSY Eco 8x90 @ 62mm o.c. Stagger rows with 20mm offset						

CLT panel to panel half lap connection example with SWG ASSY® screws

Understanding & Specifying Engineered Structural SWG ASSY® Screws

CLT panel to beam and panel to panel connection with SWG ASSY® screws

Panel to panel connections can be established utilizing a variety of connectors and connector arrangements. Depending on the purpose of the connection or expected system performances three major connection types can be distinguished using either partial thread or full thread screws. A variety of connection combinations are also possible.

Option #4: partial thread screws perpendicular to the panel plane in surface spline joint

Option #5: partial thread screws perpendicular to the panel plane in lap-joint

Option #6: full thread screws arranged cross wise at a 45° angle to the panel plane in lap-joint

Proposed DESIGN OPTION	ON #6 - full thread screw arranged at 45° cross wise in half lap joint							
Conditions of connection and connection requirements	The panel to panel connection is to be designed for 40kN/m under standard term loading. Loading condition: Two directional load parallel to panel lap joint.							
requirements	Canadian S-P-F CLT side member and Canadian S-P-F CLT main member connection with SWG ASSY VG 8mm x 140mm @ 45° angle.							
	Note: Fasteners shall not be installed into cracks, checks, or gaps.							
Geometry	t = lap thickness 52.5mm b = lap width 80mm h _{CLT} = 105mm (3-Ply CLT planed by Structurlam)							
	Min panel thickness 105mm -> 10d = 10* 8 = 80mm < 105mm							
Spacing, end and edge distance require-	Screw spacing parallel = 4* d = 32mm							
ments in CLT side and CLT main member	Screw spacing perpendicular = 2.5* d = 20mm							
[2]	Loaded end distance = 6* d = 48mm							
	Unloaded edge distance = 2.5* d = 20mm							
Effective thread embedment length	$L_{p,1}$ = side member = (52.5mm/cos α) - 8mm = 66.25mm $L_{p,2}$ = main member = 140mm - 74.25mm-8mm = 57.8mm							
	Note: Effective thread embedment is reduced by 1*d where d = screw diameter screw in angle α = 45°							
Withdrawal resistance [1]	Pr'w _{side} = 1.04kN* (66.25mm/20mm) = 3.45 [kN] Pr'w _{main} = 1.04kN* (57.8mm/20mm) = 3.0 [kN] main member controls design							
Tensile resistance check screw [1]	15.12 kN > 3.0 kN							
Design shear resistance per screw cross	Required effective number of screw crosses							
	3.0kN 3.0kN 40kN / 4.24kN = 9.43 screw crosses							
	Select 13 screw crosses to account for potential group factor \rightarrow 13 ^{0.9} = 10.05 \rightarrow 10.05 > 9.43 2*3.0*cos 45° = 4.24kN							
Serviceability limit state connection stiffness	$K_{\text{ser}} = 780 \text{ d}^{0.2} + L_{\text{D,i}}^{0.4} = 5617 \text{ N/mm}$							
estimate [5]	Estimated connection stiffness along shear plane per screw cross with screws at 45° = 2*5617*cos45°= 7943N/mm							
	Estimated connection stiffness parallel to shear plane with 10.05 effective screw crosses = 10.05*7943kN/mm = 83.4kN/mm							
	Note: only applicable to axially loaded SWG ASSY VG full thread screws							
Connection specification	Use 13 screw crosses (13 SWG ASSY VG per meter @45° in each direction @50mm o.c. spacing between screws of opposite orientation min. 20mm							

Understanding & Specifying Engineered Structural SWG ASSY® Screws

CLT panel to panel connection with SWG ASSY® screws @ 90°

Fmax = maximum recorded force during test, Displ. Fmax = recorded displacement at Fmax,

0.4 Fmax, 0.7 Fmax = recorded force at 40% of predicted ultimate capacity and respectively 70%

Displ. 0.4Fmax, 0.7 Fmax = recorded displacement at respective force level, Stiffness ultimate = calculated stiffness at Fmax

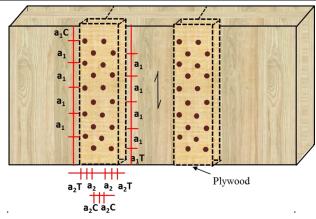
Stiffness 0.4 Fmax, 0.7 Fmax = calculate stiffness at respective load level, Design value = Capacity as per outlined design example procedure

Over-strength factor = Tested capacity/ design capacity

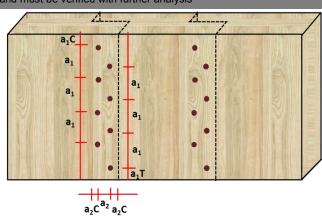
SS=Surface Spline, LI=Lap Joint, BJ=Butt Joint, 3p = 3 pieces of panel, nR= n rows of screws per each side of shear planes (n=1 and 2),

8S= Spacing of the screws is 8 times the diameter of the screw, 45= Angle between the screw axis and the CLT plane

Table 3: Proposed design values vs obtained test values—CLT panel to panel connections with three members


Design values vs Test values Note: Values consider $K_D = 1.15$ for shorty term loading

Specimen 3-Ply CLT	# of screws	Fmax [kN]	Displ. Fmax [mm]	0.4 Fmax [kN]	Displ. 0.4 Fmax [mm]	0.7 Fmax [kN]	Displ. 0.7 Fmax [mm]	Stiffness ultimate [kN/ mm]	Stiffness 0.4 Fmax [kN/mm]	Stiffness 0.7 Fmax [kN/mm]	Design value [kN]	Over- strength	Predicted displace- ment ¹ [mm]
SS_3p_3ply_1R_8S 3/4" plywood spline	10	20.35	34.2	8.14	3.3	14.25	9	0.6	2.47	1.58	≈7.75	2.63	≈1.7
SS_3p_3ply_2R_8S 3/4" plywood spline	20	34.10	22.3	13.64	3	23.87	8.7	1.53	4.55	2.74	≈15.49	2.20	≈1.7
SS_3p_5ply_1R_8S 1" plywood spline	10	30.80	47.7	12.32	6.4	21.56	18.6	0.65	1.93	1.16	≈9.79	3.15	≈1.7
SS_3p_5ply_2R_8S 1" plywood spline	20	4595	33	18.32	4.8	32.17	12.2	1.39	3.83	2.64	≈19.57	2.35	≈1.7
LJ_3p_3ply_1R_8S	5	25.65	23.5	10.26	1.3	17.96	8.7	1.09	7.89	2.06	≈*2.78	9.22	≈2.1
LJ_3p_5ply_1R_8S	5	53.40	43.3	21.36	2.6	37.38	12.5	1.23	8.22	2.99	≈7.13	7.49	≈2.5
LJ_3p_3ply_2R_45	8	43.40	2.6	17.36	**0.03	30.38	**0.32	16.69	578.67	94.94	≈19.62	2.21	≈0.63
LJ_3p_5ply_2R_45	6	59.19	3	23.66	**0.11	41.41	**0.74	19.72	215.09	55.95	≈24.60	2.40	≈0.84
BJ_3p_3ply_2R_8S	4	47.40	1.8	18.96	**0.1	33.18	**0.2	26.33	189.60	165.90	-	-	-


Note: Results listed in this table are average measurements out of 6 tests. FT= Full Thread screw

A load duration factor of $K_D = 1.15$ is considered

^{**} Testing with 3 members indicated very small displacements during testing and must be verified with further analysis

CLT panel to panel surface spline joint

CLT panel to panel half lap joint

17

¹ Predicted displacement (estimate) based on CSA 086 section A.12.6.6.3 and the Design Value from table 3 above in kN

^{*}J_{pl} factor of J_{pl} = 0.625 for reduced fastener penetration into main member heavily impacts design value

Understanding & Specifying Engineered Structural SWG ASSY® Screws

CLT panel to panel connection with SWG ASSY® screws @ 90° and 45°

Fmax = maximum recorded force during test, Displ. Fmax = recorded displacement at Fmax,

0.4 Fmax, 0.7 Fmax = recorded force at 40% of predicted ultimate capacity and respectively 70%

Displ. 0.4 Fmax, 0.7 Fmax = recorded displacement at respective force level, Stiffness ultimate = calculated stiffness at Fmax

Stiffness 0.4Fmax, 0.7Fmax = calculate stiffness at respective load level, Design value = Capacity as per outlined design example procedure

Over-strength factor = Tested capacity/ design capacity

SS=Surface Spline, LI=Lap Joint, BJ=Butt Joint, 3p = 3 pieces of panel, nR= n rows of screws per each side of shear planes (n=1 and 2),

8S= Spacing of the screws is 8 times the diameter of the screw, 45= Angle between the screw axis and the CLT plane

Table 4: Proposed design values vs obtained test values - CLT panel to panel connections with two members

Design values vs Test values Note: Values consider K_D = 1.15 for shorty term loading

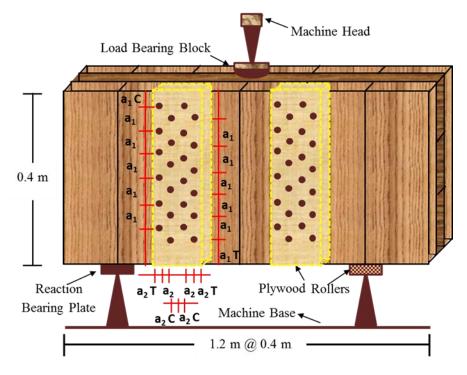
Specimen 3-Ply CLT	# of screws	Fmax [kN]	Displ. Fmax [mm]	0.4 Fmax [kN]	Displ. 0.4 Fmax [mm]	0.7 Fmax [kN]	Displ. 0.7 Fmax [mm]	Stiffness ultimate [kN/ mm]	Stiffness 0.4 Fmax [kN/mm]	Stiffness 0.7 Fmax [kN/mm]	Design value [kN]	Over- strength	Predicted displace- ment ¹ [mm]
SS_2p_3ply_1R_90 3/4" plywood spline	16	50.46	47.60	20.18	5.00	35.32	11.50	1.06	4.04	3.07	≈12.39	4.07	≈1.73
SS_2p_5ply_1R_90 1" plywood spline	16	84.50	56.30	33.80	6.33	59.15	24.50	1.50	5.34	2.41	≈15.66	5.40	≈1.75
LJ_2p_3ply_1R_90	8	54.12	26.50	21.65	4.17	37.88	12.25	2.04	5.19	3.09	≈*4.92	11.01	≈2.45
LJ_2p_5ply_1R_90	8	85.59	54.70	34.23	4.67	59.91	13.83	1.56	7.33	4.33	≈12.00	7.13	≈2.62
LJ_2p_3ply_1R_45	12	84.71	5.40	33.88	0.40	59.30	1.07	15.69	84.71	55.42	≈24.46	3.46	≈0.58
LJ_2p_5ply_1R_45	10	126.56	4.40	50.62	0.80	88.59	1.87	28.76	63.28	47.38	≈31.77	3.98	≈0.74
LJ_2p_3ply_1R_45-90	8	52.21	19.50	20.89	**0.52	36.55	1.63	2.68	40.17	22.42	≈9.10	5.74	≈0.58
LJ_2p_5ply_1R_45-90	8	71.84	3.00	28.73	**0.38	50.29	0.82	23.95	75.62	61.32	≈13.93	5.16	≈0.74
BJ_2p_3ply_1R_33/45	8	62.77	5.80	25.11	**0.62	43.94	1.67	10.82	40.50	26.31	-	-	-

Note: Results listed in this table are average measurements out of 6 tests. FT= Full Thread screw

A load duration factor of $K_D = 1.15$ is considered.

^{**} Testing with 3 members indicated very small displacements during testing and must be verified with further analysis

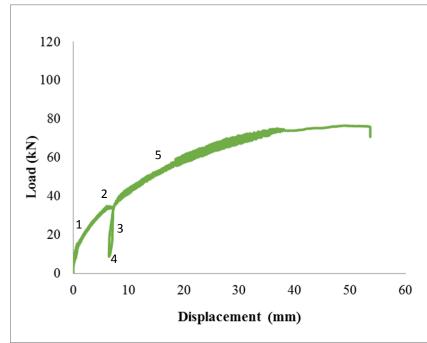
 $^{^{}m 1}$ Predicted displacement (estimate) based on CSA 086 section A.12.6.6.3 and the Design Value from table 4 above


^{*}J_{nl} factor of J_{nl} = 0.625 for reduced fastener penetration into main member heavily impacts design value

MyTiCon Timber Connectors White Paper

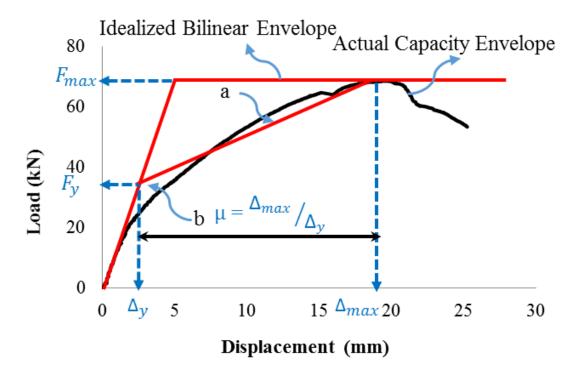
Appendix A Loading procedure connection testing with 3 CLT members

- Loading under displacement control
- Failure is assumed after the load dropped below 80% of the maximum load recorded in respective specimen
- Data on actuator load and displacement of CLT center piece was recorded


Understanding & Specifying Engineered Structural SWG ASSY® Screws

Appendix B

Loading procedure connection testing with 2 CLT members



- 1. Loading up to 40% of expected peak load
- 2. Holding load for 30 seconds
- 3. Unloading down to 10% of expected peak load
- 4. Holding load for 30 seconds
- 5. Loading of connection until failure occurs. Failure is assumed after load dropped below 80% of the maximum recorded load in respective specimen

Appendix C
Assumptions for ductility estimate according to FEMA 356 (2000)

Appendix D

Typical average load displacement curves out of 6 tests with 3 CLT members

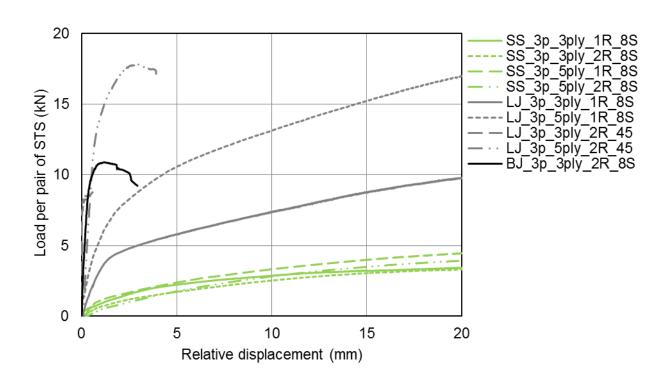


Table 5: Preliminary test results for 3-Ply CLT and 5-Ply CLT connections consisting out of 3 members

Series	F _{max} ¹ (kN)	F @ 5mm displ. ¹ (kN)	Yield load F _Y ¹ (kN)	Displ. @ F _{max} ² (mm)	Displ. @ yield $\Delta_{ m y}$ (mm)	Ductility μ (-)
SS_3p_3ply_1R_8S	4.1	2.7	2.7	34.2	4.9	7.0
SS_3p_3ply_2R_8S	3.4	2.9	2.0	22.3	3.7	6.1
LJ_3p_3ply_1R_8S	10.3	6.1	6.4	23.5	5.1	5.5
LJ_3p_3ply_2R_45	10.8	-	8.8	2.6	0.8	4.2
BJ_3p_3ply_2R_8S	11.9	-	10.6	1.8	0.4	4.9
SS_3p_5ply_1R_8S	6.2	2.7	3.6	47.7	8.6	5.7
SS_3p_5ply_1R_8S	4.6	1.7	2.8	33.0	7.0	4.9
LJ_3p_5ply_1R_8S	21.4	10.5	14.3	43.3	8.3	5.4
LJ_3p_5ply_2R_45	19.7	-	17	3.0	1.5	2.5

Appendix E

Typical average load displacement curves out of 6 tests with 2 member 3-Ply CLT

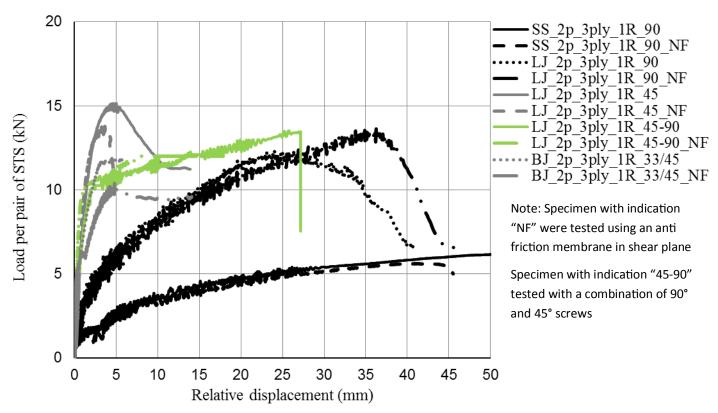


Table 6: Preliminary test results for 3-Ply CLT connections consisting out of 2 members

Series	F _{max} ¹ (kN)	F @ 5mm displ. ¹ (kN)	Yield load F _Y ¹ (kN)	Displ. @ F _{max} ² (mm)	Displ. @ yield $\Delta_{ m y}$ (mm)	Ductility μ (-)
SS_2p_3ply_1R_90	6.3	2.5	4.5	47.6	12.1	4.0
SS_2p_3ply_1R_90_NF	6.2	2.5	4.3	54.0	11.7	4.7
LJ_2p_3ply_1R_90	13.5	5.8	8.7	26.5	9.8	2.7
LJ_2p_3ply_1R_90_NF	13.6	6.0	8.3	30.5	8.5	3.6
LJ_2p_3ply_1R_45	14.1	11.2	12.0	5.4	1.5	3.5
LJ_2p_3ply_1R_45_NF	14	11	10.8	5.7	1.8	3.0
LJ_2p_3ply_1R_45-90	13.1	11.3	11.0	19.5	2.4	8.1
LJ_2p_3ply_1R_45- 90_NF	13.0	11.2	10.5	7.8	2.0	4.3
BJ_2p_3ply_1R_33/45	15.7	14.0	11.5	5.8	2.0	2.9
BJ_2p_3ply_1R_33/45_ NF	14.2	12.5	12.0	6.3	3.1	2.1

Appendix F Typical average load displacement curves out of 6 tests with 2 member 5-Ply CLT

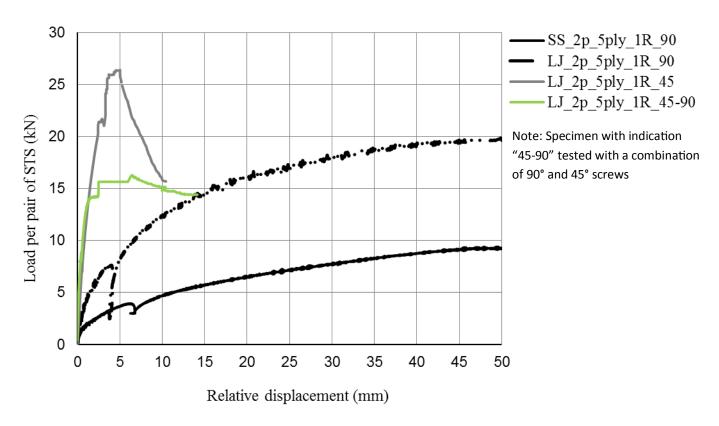


Table 7: Preliminary test results for 5-Ply CLT connections consisting out of 2 members

Series	F _{max} ¹ (kN)	F @ 5mm displ. ¹ (kN)	Yield load F _Y (kN)	Displ. @ F _{max} ² (mm)	Displ. @ yield Δ _y (mm)	Ductility μ (-)
SS_2p_5ply_1R_90	10.6	3.6	7	56.3	12.0	4.3
LJ_2p_5ply_1R_90	21.4	8.4	14.8	54.7	11.8	4.7
LJ_2p_5ply_1R_45	25.3	23	19.2	4.4	1.8	2.6
LJ_2p_5ply_1R_45-90	18	16.6	15.4	3.0	2.5	2.5

Appendix G

Typical average ultimate load displacement curves out of 6 tests with 3 CLT members

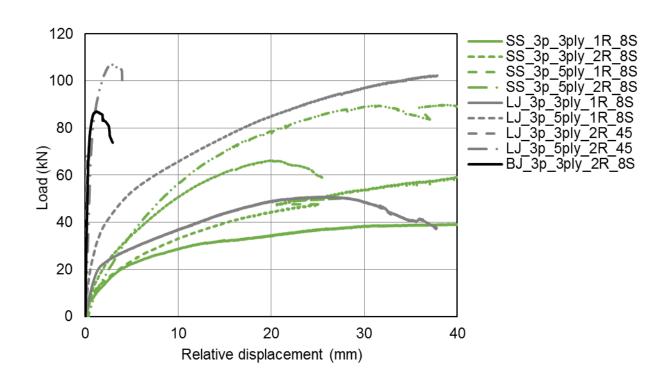


Table 8: Preliminary test results for 3-Ply CLT and 5-Ply CLT connections consisting out of 3 members

Series	F _{max} ¹ (kN)	F @ 5mm displ. ¹ (kN)	Yield load F _Y ¹ (kN)	Displ. @ F _{max} ² (mm)	Displ. @ yield $\Delta_{ m y}$ (mm)	Ductility μ (-)
SS_3p_3ply_1R_8S	40.7	22.8	27.2	34.2	4.9	7.0
SS_3p_3ply_2R_8S	68.2	34.7	40.0	22.3	3.7	6.1
LJ_3p_3ply_1R_8S	51.3	30.3	32.0	23.5	5.1	5.5
LJ_3p_3ply_2R_45	86.8	-	70.7	2.6	0.8	4.2
BJ_3p_3ply_2R_8S	94.8	-	85.0	1.8	0.4	4.9
SS_3p_5ply_1R_8S	61.6	26.7	35.7	47.7	8.6	5.7
SS_3p_5ply_1R_8S	91.9	34.7	56.7	33.0	7.0	4.9
LJ_3p_5ply_1R_8S	106.8	52.7	71.7	43.3	8.3	5.4
LJ_3p_5ply_2R_45	118.3	-	102.0	3.0	1.5	2.5

Appendix H

Typical average ultimate load displacement curves out of 6 tests with 2 member 3-Ply

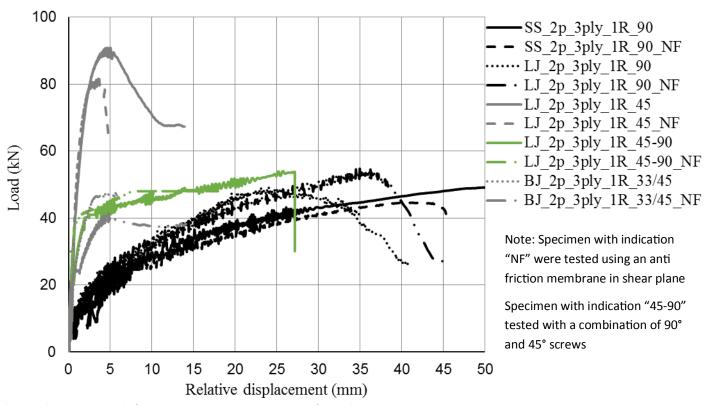


Table 9: Preliminary test results for 3-Ply CLT connections consisting out of 2 members

Series	F _{max} ¹ (kN)	F @ 5mm displ. ¹ (kN)	Yield load F _Y ¹ (kN)	Displ. @ F _{max} ² (mm)	Displ. @ yield Δ _y (mm)	Ductility μ (-)
SS 2p 3ply 1R 90	50.5	20.2	36.0	47.6	12.1	4.0
SS_2p_3ply_1R_90_NF	49.8	19.7	34.3	54.0	11.7	4.7
LJ_2p_3ply_1R_90	54.1	23.3	34.7	26.5	9.8	2.7
LJ_2p_3ply_1R_90_NF	54.5	24.0	33.0	30.5	8.5	3.6
LJ_2p_3ply_1R_45	84.7	67.0	72.0	5.4	1.5	3.5
LJ_2p_3ply_1R_45_NF	84.2	66.0	65.0	5.7	1.8	3.0
LJ_2p_3ply_1R_45-90	52.2	45.3	44.0	19.5	2.4	8.1
LJ_2p_3ply_1R_45-90_NF	52.1	44.7	42.0	7.8	2.0	4.3
BJ_2p_3ply_1R_33/45	60.2	56.0	46.0	5.8	2.0	2.9
BJ_2p_3ply_1R_33/45_NF	56.9	50.0	48.0	6.3	3.1	2.1

Understanding & Specifying Engineered Structural SWG ASSY® Screws

Appendix I Typical average ultimate load displacement curves out of 6 tests with 3 member 5-Ply

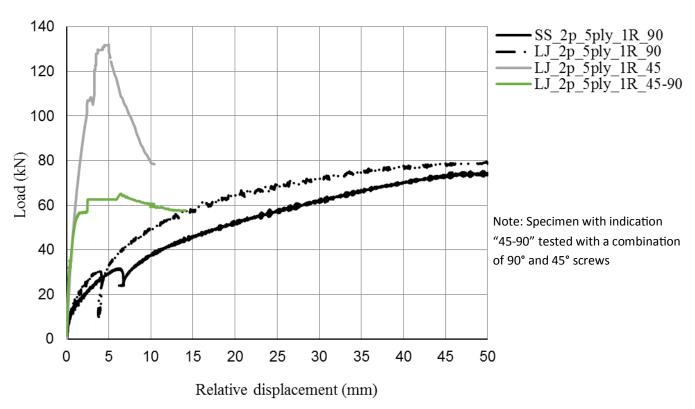


Table 10: Preliminary test results for 5-Ply CLT connections consisting out of 2 members

Series	F _{max} ¹ (kN)	F @ 5mm displ. ¹ (kN)	Yield load F _Y (kN)	Displ. @ F _{max} ² (mm)	Displ. @ yield $\Delta_{ m y}$ (mm)	Ductility μ (-)
SS_2p_5ply_1R_90	84.5	28.5	56.0	56.3	12.0	4.3
LJ_2p_5ply_1R_90	85.6	33.7	59.0	54.7	11.8	4.7
LJ_2p_5ply_1R_45	126.6	115.2	95.8	4.4	1.8	2.6
LJ_2p_5ply_1R_45-90	71.8	66.3	61.7	3.0	2.5	2.5

MyTiCon Timber Connectors White Paper

Understanding & Specifying Engineered Structural SWG ASSY® Screws

Design tables for SWG ASSY® VG screws

Table 11: Assumed factored withdrawal resistance of SWG ASSY® VG screws in kN per 20 mm of thread penetration

Factored withdrawal resistance * P' _{rw,\alpha} per 20 mm of thread penetration in kN (only applicable to SWG ASSY® VG screws)							
		IV	lean oven dry r	elative density	1		Factored
Screw diameter in mm	0.35	0.42	0.44	0.46	0.49	0.50 (PSL)	tensile
			α ** =	90°			resistance in kN
6	0.63	0.91	0.97	1.06	1.20	0.70	9.04
8	0.85	1.22	1.29	1.41	1.60	0.94	15.12
10	1.06	1.52	1.61	1.76	2.00	1.17	19.2
12	1.27	1.83	1.94	2.12	2.40	1.41	24
			α ** =	: 45°			
6	0.54	0.78	0.83	0.91	1.03	0.60	9.04
8	0.73	1.04	1.11	1.21	1.37	0.80	15.12
10	0.91	1.31	1.38	1.51	1.71	1.00	19.2
12	1.09	1.57	1.66	1.81	2.06	1.21	24
			α ** = 30°	•			
6	0.51	0.73	0.77	0.85	0.96	0.56	9.04
8	0.68	0.98	1.03	1.13	1.28	0.75	15.12
10	0.85	1.22	1.29	1.41	1.60	0.94	19.2
12	1.02	1.46	1.55	1.69	1.92	1.12	24

Note: * assumed resistance as per [1]

^{**} α : angle between wood grain and screw axis

Understanding & Specifying Engineered Structural SWG ASSY® Screws

SWG ASSY® VG Cyl. (full thread)

Table 12: SWG ASSY® VG Cyl screw specifications

Major Ø	Length	Thread Length	Lt	Head Ø	Minor Ø	Bit
		mm				
	70	63				
	80	73				
	100	93				
	120	113			2.0	AW
6	140	133	6	8	3.8	30
	160	153				
	180	173				
	200	193				
8	160 to 300 in 20 mm increments 330 360 380 430 480 530 580	144 to 284 in 20 mm increments 314 344 364 414 464 514 564	8	10	5	AW 40
10	140 to 280 in 20 mm increments 300 320 to 400 in 20 mm increments 430 480 530 580 and longer	in 20 mm increments 280 305 to 380 in 20 mm increments 415 456 506 556 and longer	10	13.4	6.2	AW 50

Note: values listed in the table above are average measurements between upper and lower tolerance boundary

MyTiCon Timber Connectors White Paper

MyTiCon Timber Connectors

Understanding & Specifying Engineered Structural SWG ASSY® Screws

SWG ASSY® VG CSK (full thread)

Table 13: SWG ASSY® VG CSK screw specifications

Major Ø	Length	Thread Length	L _t	Head Ø	Minor Ø	Bit
		mm				
	120	103				
	140	123				
	160	143				
	180	163				
8	200	183	8	1/10	5	AW 40
0	220	203	٥	14.8	5	
	240	223				
	260	243				
	280	263				
	300	283				
	140 to 400 in 20 mm increments	125 to 385 in 20 mm increments		19.6	6.2	AW 50
	430	415				
	480	465	40			
10	530	512	10			
	580	562				
	650 to 800 in 50 mm increments	632 to 782 in 50 mm increments				
	220	205		22.1		
12	380	365	12		7.1	AW
12	480	465	12		7.1	50
	600	585				

 $\underline{\textit{Note:}}$ values listed in the table above are average measurements between upper and lower tolerance boundary

MyTiCon Timber Connectors White Paper

Understanding & Specifying Engineered Structural SWG ASSY® Screws

References

- [1] CCMC report 'CCMC 13677-R'
- [2] CLT Connection Design Guide CSA by MyTiCon Timber Connectors Inc.
- [3] Eurocode 5—DIN EN 1995-1-1:2010-12: 8.7.2(8) Axially loaded screws
- [4] FPI CLT Design Workshop handout Toronto Canada
- [5] European Technical Approval ETA-11/0190
- [6] CSA 086 2015 section A.12.6.6.3
- [7] FEMA 356. (2000). *Prestandard and commentary for the seismic rehabilitation of buildings*. Federal Emergency Management Agency, Washington, D.C.

Find more resources for our modern timber connection systems, including technical design data, installation guides, CAD files, videos, research data and more white papers on our website

www.my-ti-con.com

Or

Contact us

sales@my-ti-con.com

1-866.899.4090

Technical Support

<u>info@my-ti-con.com</u>

1-866.899.4090